Mapping of Social Vulnerability to Natural Hazards in Geodemographic Analysis Using Fuzzy Geographically Weighted Clustering
(1) Faculty of Science and Technology, Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang, Indonesia
(2) Faculty of Science and Technology, Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang, Indonesia
(3) Faculty of information technology and industry, Universitas Stikubank, Indonesia
Abstract
Purpose: Assessing social vulnerability is essential for addressing environmental risks by developing suitable adaptation strategies and fostering a resilience mindset. However, relying solely on an index-based approach to measure social vulnerability has limitations as it only provides a broad overview. It is essential to recognize that various regions are influenced by distinct factors contributing to social vulnerability. This study aims to pinpoint specific community factors that impact vulnerability to natural disasters in various districts across Indonesia.
Methods: In this research, we determine the optimal number of clusters with the Cluster Validity Index (CVI). Furthermore, this research applies clustering analysis of social vulnerability to natural disasters at the district level using the Fuzzy Geographically Weighted Clustering (FGWC) algorithm.
Results: This research highlights varying social vulnerability profiles across Indonesia's diverse districts. Specifically, districts on the western side of Sumatra Island, such as Nias and Mentawai, and those in the eastern regions of Indonesia, including Nusa Tenggara, West Sulawesi, Central Sulawesi, North Sulawesi, the Southern Maluku Islands, and Papua, exhibit the most noticeable vulnerability. This vulnerability is particularly evident in socioeconomic indicators, family composition, housing conditions, and educational access.
Novelty: The results of this study provide valuable support for the government as a policymaker. By identifying priority areas and tailoring policies to address critical social vulnerability issues in each district, especially in the most vulnerable areas, the research offers a practical framework for targeted and effective disaster risk reduction and mitigation efforts.
Keywords
Full Text:
PDFReferences
F. Atwii et al., “World Risk Report 2022,” Stuttgart, Germany, 2022.
S. A. Zarghami and J. Dumrak, “A system dynamics model for social vulnerability to natural disasters: Disaster risk assessment of an Australian city,” Int. J. Disaster Risk Reduct., vol. 60, no. January, p. 102258, Jun. 2021, doi: 10.1016/j.ijdrr.2021.102258.
K. K. Zander, R. Sibarani, J. Lassa, D. Nguyen, and A. Dimmock, “How do Australians use social media during natural hazards? A survey,” Int. J. Disaster Risk Reduct., vol. 81, no. July, p. 103207, Oct. 2022, doi: 10.1016/j.ijdrr.2022.103207.
P. A. Kaban, R. Kurniawan, R. E. Caraka, B. Pardamean, B. Yuniarto, and Sukim, “Biclustering Method to Capture the Spatial Pattern and to Identify the Causes of Social Vulnerability in Indonesia: A New Recommendation for Disaster Mitigation Policy,” Procedia Comput. Sci., vol. 157, pp. 31–37, 2019, doi: 10.1016/j.procs.2019.08.138.
S. L. Cutter, “Vulnerability to hazards,” Prog. Hum. Geogr., vol. 20, no. 4, pp. 529–539, 1996.
E. Polcarová and J. Pupíková, “Analysis of Socially Vulnerable Communities and Factors Affecting Their Safety and Resilience in Disaster Risk Reduction,” Sustain., vol. 14, no. 18, 2022, doi: 10.3390/su141811380.
V. Cerchiello, P. Ceresa, R. Monteiro, and N. Komendantova, “Assessment of social vulnerability to seismic hazard in Nablus, Palestine,” Int. J. Disaster Risk Reduct., vol. 28, pp. 491–506, 2018, doi: 10.1016/j.ijdrr.2017.12.012.
S. K. Aksha, L. Juran, L. M. Resler, and Y. Zhang, “An Analysis of Social Vulnerability to Natural Hazards in Nepal Using a Modified Social Vulnerability Index,” Int. J. Disaster Risk Sci., vol. 10, no. 1, pp. 103–116, 2019, doi: 10.1007/s13753-018-0192-7.
C. Armenakis, E. X. Du, S. Natesan, R. A. Persad, and Y. Zhang, “Flood risk assessment in urban areas based on spatial analytics and social factors,” Geosci., vol. 7, no. 4, pp. 1–15, 2017, doi: 10.3390/geosciences7040123.
B. M. de Loyola Hummell, S. L. Cutter, and C. T. Emrich, “Social Vulnerability to Natural Hazards in Brazil,” Int. J. Disaster Risk Sci., vol. 7, no. 2, pp. 111–122, 2016, doi: 10.1007/s13753-016-0090-9.
B. E. Flanagan, E. J. Hallisey, E. Adams, and A. Lavery, “Prevention ’ s Social Vulnerability Index,” J. J Env. Heal., vol. 80, no. 10, pp. 34–36, 2020.
D. K. Yoon, “Assessment of social vulnerability to natural disasters: A comparative study,” Nat. Hazards, vol. 63, no. 2, pp. 823–843, 2012, doi: 10.1007/s11069-012-0189-2.
P. Krishnan et al., “Framework for mapping the drivers of coastal vulnerability and spatial decision making for climate-change adaptation: A case study from Maharashtra, India,” Ambio, vol. 48, no. 2, pp. 192–212, 2019, doi: 10.1007/s13280-018-1061-8.
W. Zhang, X. Xu, and X. Chen, “Social vulnerability assessment of earthquake disaster based on the catastrophe progression method: A Sichuan Province case study,” Int. J. Disaster Risk Reduct., vol. 24, pp. 361–372, 2017, doi: 10.1016/j.ijdrr.2017.06.022.
K. Krellenberg, J. Welz, F. Link, and K. Barth, “Urban vulnerability and the contribution of socioenvironmental fragmentation: Theoretical and methodological pathways,” Prog. Hum. Geogr., vol. 41, no. 4, pp. 408–431, 2017, doi: 10.1177/0309132516645959.
D. Hao, D. Shei-Fei, and H. Li-Hua, “Research Progress of Attribute Reduction Based on Rough Sets,” Comput. Eng. Sci., vol. 32, no. 6, 2010.
T. B. Paveglio, C. M. Edgeley, and A. M. Stasiewicz, “Assessing influences on social vulnerability to wildfire using surveys, spatial data and wildfire simulations,” J. Environ. Manage., vol. 213, pp. 425–439, 2018, doi: 10.1016/j.jenvman.2018.02.068.
E. Mavhura and T. Manyangadze, “A comprehensive spatial analysis of social vulnerability to natural hazards in Zimbabwe: Driving factors and policy implications,” Int. J. Disaster Risk Reduct., vol. 56, no. February, p. 102139, 2021, doi: 10.1016/j.ijdrr.2021.102139.
P. Pampouktsi et al., “Techniques of Applied Machine Learning Being Utilized for the Purpose of Selecting and Placing Human Resources within the Public Sector,” J. Inf. Syst. Explor. Res., vol. 1, no. 1, pp. 1–16, 2023.
S. L. Cutter, B. J. Boruff, and W. L. Shirley, “Social vulnerability to environmental hazards,” Soc. Sci. Q., vol. 84, no. 2, pp. 242–261, 2003, doi: 10.1111/1540-6237.8402002.
J. Birkmann, N. J. Setiadi, and N. Baumert, “Socio-economic Vulnerability Assessment at the Local Level in Context of Tsunami Early Warning and Evacuation Planning in the City of Padang, West Sumatra,” in International Conference on Tsunami Warning (ICTW, 2008, no. January, pp. 1–8.
T. H. Siagian, P. Purhadi, S. Suhartono, and H. Ritonga, “Social vulnerability to natural hazards in Indonesia: Driving factors and policy implications,” Nat. Hazards, vol. 70, no. 2, pp. 1603–1617, 2014, doi: 10.1007/s11069-013-0888-3.
R. Kurniawan et al., “Construction of social vulnerability index in Indonesia using partial least squares structural equation modeling,” Int. J. Eng. &Technology, vol. 7, no. 4, pp. 6131–6136, 2018, doi: 10.14419/ijet.v7i4.
A. L. Nugraha, M. Awaluddin, A. Sukmono, and N. Wakhidatus, “Pemetaan Dan Penilaian Kerentanan Bencana Alam Di Kabupaten Jepara Berbasis Sistem Informasi Geografis,” Geoid, vol. 17, no. 2, p. 185, 2022, doi: 10.12962/j24423998.v17i2.9370.
Y. T. Wijaya and I. T. Halim, “Measuring and Profiling Social Vulnerability to Natural Disaster in Indonesia in 2019,” J. Mat. Stat. dan Komputasi, vol. 19, no. 1, pp. 183–194, Sep. 2022, doi: 10.20956/j.v19i1.21686.
J. Birkmann et al., “Framing vulnerability, risk and societal responses: The MOVE framework,” Nat. Hazards, vol. 67, no. 2, pp. 193–211, 2013, doi: 10.1007/s11069-013-0558-5.
B. E. Flanagan, E. W. Gregory, E. J. Hallisey, J. L. Heitgerd, and B. Lewis, “A Social Vulnerability Index for Disaster Management,” J. Homel. Secur. Emerg. Manag., vol. 8, no. 1, Jan. 2011, doi: 10.2202/1547-7355.1792.
R. C. Nethery, D. P. Sandler, S. Zhao, L. S. Engel, and R. K. Kwok, “A joint spatial factor analysis model to accommodate data from misaligned areal units with application to Louisiana social vulnerability,” Biostatistics, vol. 20, no. 3, pp. 468–484, 2019, doi: 10.1093/biostatistics/kxy016.
B. I. Nasution, R. Kurniawan, T. H. Siagian, and A. Fudholi, “Revisiting social vulnerability analysis in Indonesia: An optimized spatial fuzzy clustering approach,” Int. J. Disaster Risk Reduct., vol. 51, no. May, p. 101801, 2020, doi: 10.1016/j.ijdrr.2020.101801.
X. Guo and N. Kapucu, “Social Vulnerability Evaluation for Ankang City, China, using Fuzzy Analytic Hierarchy Process Method,” J. Homel. Secur. Emerg. Manag., vol. 15, no. 3, Sep. 2018, doi: 10.1515/jhsem-2016-0037.
S. W. M. Weis et al., “Assessing vulnerability: an integrated approach for mapping adaptive capacity, sensitivity, and exposure,” Clim. Change, vol. 136, no. 3–4, pp. 615–629, 2016, doi: 10.1007/s10584-016-1642-0.
A. Fekete, “Social Vulnerability (Re-)Assessment in Context to Natural Hazards: Review of the Usefulness of the Spatial Indicator Approach and Investigations of Validation Demands,” Int. J. Disaster Risk Sci., vol. 10, no. 2, pp. 220–232, 2019, doi: 10.1007/s13753-019-0213-1.
F. Fatemi, A. Ardalan, B. Aguirre, N. Mansouri, and I. Mohammadfam, “Social vulnerability indicators in disasters: Findings from a systematic review,” Int. J. Disaster Risk Reduct., vol. 22, pp. 219–227, Jun. 2017, doi: 10.1016/j.ijdrr.2016.09.006.
L. H. Son, B. C. Cuong, P. L. Lanzi, and N. T. Thong, “A novel intuitionistic fuzzy clustering method for geo-demographic analysis,” Expert Syst. Appl., vol. 39, no. 10, pp. 9848–9859, 2012, doi: 10.1016/j.eswa.2012.02.167.
G. Grekousis and H. Thomas, “Comparison of two fuzzy algorithms in geodemographic segmentation analysis: The Fuzzy C-Means and Gustafson–Kessel methods,” Appl. Geogr., vol. 34, pp. 125–136, May 2012, doi: 10.1016/j.apgeog.2011.11.004.
L. H. Son, “Enhancing clustering quality of geo-demographic analysis using context fuzzy clustering type-2 and particle swarm optimization,” Appl. Soft Comput., vol. 22, pp. 566–584, Sep. 2014, doi: 10.1016/j.asoc.2014.04.025.
I. S. Holand, P. Lujala, and J. K. Rod, “Social vulnerability assessment for Norway: A quantitative approach,” Nor. Geogr. Tidsskr., vol. 65, no. 1, pp. 1–17, 2011, doi: 10.1080/00291951.2010.550167.
D. Liu and Y. Li, “Social vulnerability of rural households to flood hazards in western mountainous regions of Henan province, China,” Nat. Hazards Earth Syst. Sci., vol. 16, no. 5, pp. 1123–1134, May 2016, doi: 10.5194/nhess-16-1123-2016.
X. Guo and N. Kapucu, “Assessing social vulnerability to earthquake disaster using rough analytic hierarchy process method: A case study of Hanzhong City, China,” Saf. Sci., vol. 125, no. December 2019, p. 104625, 2020, doi: 10.1016/j.ssci.2020.104625.
C. Guillard-Goncąlves, S. L. Cutter, C. T. Emrich, and J. L. Zêzere, “Application of Social Vulnerability Index (SoVI) and delineation of natural risk zones in Greater Lisbon, Portugal,” J. Risk Res., vol. 18, no. 5, pp. 651–674, 2015, doi: 10.1080/13669877.2014.910689.
W. Chen, S. L. Cutter, C. T. Emrich, and P. Shi, “Measuring social vulnerability to natural hazards in the Yangtze River Delta region, China,” Int. J. Disaster Risk Sci., vol. 4, no. 4, pp. 169–181, 2013, doi: 10.1007/s13753-013-0018-6.
O. Drakes, E. Tate, J. Rainey, and S. Brody, “Social vulnerability and short-term disaster assistance in the United States,” Int. J. Disaster Risk Reduct., vol. 53, p. 102010, Feb. 2021, doi: 10.1016/j.ijdrr.2020.102010.
A. L. Griego, A. B. Flores, T. W. Collins, and S. E. Grineski, “Social vulnerability, disaster assistance, and recovery: A population-based study of Hurricane Harvey in Greater Houston, Texas,” Int. J. Disaster Risk Reduct., vol. 51, no. July, p. 101766, 2020, doi: 10.1016/j.ijdrr.2020.101766.
F. A. Husna, D. Purwitasari, B. A. Sidharta, D. A. Sihombing, A. Fahmi, and M. H. Purnomo, “A Clustering Approach for Mapping Dengue Contingency Plan,” Sci. J. Informatics, vol. 9, no. 2, pp. 149–160, Nov. 2022, doi: 10.15294/sji.v9i2.36885.
P. J. B. Brown and P. W. J. Batey, “Applications of geodemographic methods in the analysis of health condition incidence data,” Reg. Sci., vol. 70, no. 3, pp. 329–344, 1991.
“Implementation of fuzzy tsukamoto in employee performance assessment,” J. Soft Comput. Explor., vol. 2, no. 2, Sep. 2021, doi: 10.52465/joscex.v2i2.52.
K. Tyas, A. Ms Ubaidillah, and D. Rahmawati, “The application of the tsukamoto fuzzy method in controlling the dryer for shrimp cracker hygienization,” J. Student Res. Explor., vol. 1, no. 2, 2023, doi: https://doi.org/10.52465/josre.v1i2.143.
G. A. Mason and R. D. Jacobson, “Fuzzy Geographically Weighted Clustering,” in Proceedings of the 9th International Conference on Geocomputation, 2007, no. 1998, pp. 1–7.
S. Sohrabizadeh, S. Tourani, and H. R. Khankeh, “The Gender Analysis Tools Applied in Natural Disasters Management: A Systematic Literature Review,” PLoS Curr., 2014, doi: 10.1371/currents.dis.5e98b6ce04a3f5f314a8462f60970aef.
Y. Lixin, Z. Xi, G. Lingling, and Z. Dong, “Analysis of social vulnerability to hazards in China,” Environ. Earth Sci., vol. 71, no. 7, pp. 3109–3117, Apr. 2014, doi: 10.1007/s12665-013-2689-0.
I. Armas and A. Gavris, “Social vulnerability assessment using spatial multi-criteria analysis (SEVI model) and the Social Vulnerability Index (SoVI model) - A case study for Bucharest, Romania,” Nat. Hazards Earth Syst. Sci., vol. 13, no. 6, pp. 1481–1499, 2013, doi: 10.5194/nhess-13-1481-2013.
Refbacks
- There are currently no refbacks.
Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]
This work is licensed under a Creative Commons Attribution 4.0 International License.