The Influence of Digestive Tract Length of Larvivorous Fish Related to Predation Potential on Aedes aegypti Larvae

##plugins.themes.academic_pro.article.main##

Tri Baskoro Tunggul Satoto
Dyah Mahendrasari Sukendra
Ignatius Hardaningsih
Ajib Diptyanusa

Abstract

Biological vector control by using larvivorous fish will be beneficial in reducing Aedes aegypti population, hence reducing risk of dengue virus transmission. It is important to select the larvivorous fish according to its digestive organ.Current study aimed to investigate the predation potential among the fish species and to identify the influence of the digestive tract length of the fish related to their predation potential. The research was an analytical observational study with post-test only design. Third stage larvae of Aedes aegypti were used as preys for tilapia (Oreochromis niloticus), common carper (Cyprinus carpio), and guppy (Poecillia reticulata). In association with their digestive tract length, predation potential of tilapia, common carper, and guppy showed statistical differences (P<0.05). Tilapia demonstrated highest predation of the larvae, followed by common carper and guppy. There are associations between difference in shapes of mouth and intestines, mouth width, intestinal length, and predation potential of these fish species. Current study results showed possible associations between digestive tract length of tilapia, common carper and guppy and predation potential on Aedes aegypti larvae, allowing these fish species to be used inbiological control of Aedes aegypti.  

##plugins.themes.academic_pro.article.details##

How to Cite
Satoto, T. B., Sukendra, D., Hardaningsih, I., & Diptyanusa, A. (2019). The Influence of Digestive Tract Length of Larvivorous Fish Related to Predation Potential on Aedes aegypti Larvae. Unnes Journal of Public Health, 8(2), 139-144. https://doi.org/10.15294/ujph.v0i0.30734

References

Benelli, G., Jeffries, C.L., & Walker, T.2016. Biological Control of Mosquito Vectors : Past, Present, and Future. Journal of Insects, 7(4):52.
Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh. O et al. . 2013. The Global Distribution and Burden of Dengue. Nature, 496(7446):504-7.
Bibi, S., Qayyum, M., Naseem, A., Khan, D., Ali S., Sami-ur-rehman, M., Aslam, M.R., &Kassi A.K. 2017. Evaluation of Wild Tilapian and Gift Tilapia as Biological Control Against Mosquito Larvae (Culex quinquefasciatus and Aedes aegypti). International Journal of Mosquito Research, 4(1):23-27.
Bouzid, M., Brainard, J., Hooper, L., Hunter, P.R. 2016. Public Health Interventions for Aedes Control in the Time of Zikavirus- A Meta-Review on Effectiveness of Vector Control Strategies. PLoS Negl Trop Dis, 10(12):e0005176.
Carvalho. T.B., Mendonça, F.Z., Costa-Ferreira, R.S., Gonçalves-de-Freitas, E. 2013. The Effect of Increased Light Intensity on The Aggressive Behavior of The Nile Tilapia, Oreochromis niloticus (Teleostei: Cichlidae).Zoologia (Curitiba Impresso), 30(2):125-129
Chang, M.S., Christophel, E.M., Gopinath, D., Abdur, R.M., Malaria, Vectorborne O, Diseases P, World Health Organization Regional O, Western P. 2011. Challenges and Future Perspective for Dengue Vector Control in The Western Pacific Region. Western Pac Surveill Response Journal, 2(2):9-16.
Fortes-Silva, R., Martínez, F.J., Villarroel, M., Sánchez-Vázquez, F.J. 2010. Daily Rhythms of Locomotor Activity, Feeding Behavior and Dietary Selection in Nile Tilapia (Oreochromis niloticus). Comp Biochem Physiol A Mol Integr Physiol, 156(4):445-450.
Hernandez, D.R., Parez, G.M.,& Domitrovic, H.A. 2009. Morphology, Histology and Histochemistry of The Digestive System of South American Catfish. International Journal of Morphology, 27: 105-111.
Khojasteh, S.M.B. 2012. The Morphology of The Post-Gastric Alimentary Canal in Teleost Fishes: ABrief Review. International Journal of Aquatic Science, 3(2): 70-88.
Lall, S. & Tibbetts S.M. 2009. Nutrition, Feeding, and Behavior of Fish.Veterinary Clinics of North America Exotic Animal Practice, 12(2):361-72.
Liew, H.J., Sinha, A.K., Mauro, N., Diricx, M., Blust, R., De Boeck G. 2012. Fasting Goldfish, Carassius auratus, and Common Carp, Cyprinus carpio, Use Different Metabolic Strategies When Swimming. Comp Biochem Physiol A Mol Integr Physiol, 163(3-4):327-35.
Londhe, S. & Sathe, T.V. 2015. Mosquito Larvae Consumption Rate of Cyprinus carpio L.Under Laboratory Conditions for Biological Pest Control. Indian Journal of Applied Research, 5(3):562-563.
Louca, V., Lucas, M.C., Green, C., Majambere, S., Fillinger, U., Lindsay, S.W. 2009. Role of Fish as Predators of Mosquito Larvae on the Floodplain of the Gambia River. J Med Entomol, 46(3):546-556.
Luchiari, A.C. & Freire, F. 2009. Effects of Environmental Colour on Growth of Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758), Maintained Individually or In Groups.Journal of Applied Ichthyology, 25:162-167.
Manon, M. R., Hossain, M. D. 2011. Food and Feeding Habit of Cyprinus carpio var. specularis. Journal of Science Foundation, 9(1&2):163-181.
Martin, C.W., Valentine, M.M., Valentine, J.F. 2010. Competitive Interactions between Invasive Nile Tilapia and Native Fish: The Potential for Altered Trophic Exchange and Modification of Food Webs. Plos One, 5(12):e14395.
MOH [Ministry of Health of Republic of Indonesia]. 2010. Prevention and Elimination of Dengue Hemorrhagic Fever in Indonesia. Jakarta: Ministry of Health Republic of Indonesia. p. 2-6.
Mutmainah, S., Prasetyo, E., & Sugiarti, L. 2014. Daya Predasi Ikan Cupang (Betta splendens) dan Ikan Guppy (Poecilia reticulate) Terhadap Larva Instar III Nyamuk Aedes aegypti Sebagai Upaya Pengendalian Vektor Penyakit Demam Berdarah Dengue (DBD). Jurnal Sains Natural, 4(2) : 98-106.
Novaes, J.L., Carvalho, E.D. 2012. Reproduction, Food Dynamics and Exploitation Level of Oreochromis niloticus (Perciformes: Cichlidae) from Artisanal Fisheries in Barra Bonita Reservoir, Brazil. Rev Biol Trop, 60(2):721-34.
Paiva, C.N., Lima, J.W., Camelo, S.S., Lima, Cde. F., Cavalcanti, L.P. 2014. Survival of Larvivorous Fish Used for Biological Control of Aedes aegypti (Diptera: Culicidae) Combined With Different Larvicides. Trop Med Int Health, 19(9):1082-6.
Raji, A.R.&Norouzi, E. 2010. Histological and Histochemical Study on The Alimentary Canal in Walking Catfish (Claris batrachus) and Piranha (Serrasalmusnattereri). Iranian Journal Veterinary Research, 3: 255-261.
Rebensburg, P. 2010. Assessment and evaluation of temperament traits in carp (Cyprinus carpio L.), with contrasts between mirror and scaled morphological phenotypes. [Diploma thesis]: Free University of Berlin, Berlin.
Saleeza, S.N., Norma-Rashid, Y., Sofian-Azirun, M. 2014. Guppies as Predators of Common Mosquito Larvae in Malaysia. Southeast Asian J Trop Med Public Health, 45(2):299-308.
Sahtout, F., Boualleg, C., Kaouachi, N., Khelifi N., Menasria, A., & Bensoullah, M. 2018. Feeding Habits of Cyprinus carpio in Foum ElKhanga Dam, Souk-Ahras, Algeria. AACL Bioflux, 11(2):554-564.
Shafi, S., Bhat, F. A., Yousuf, A. R., Parveen, M., 2012 Biology of Cyprinus carpio communis from Dal Lake, Kashmir with Reference to Food and Feeding Habits, Length-Weight Relationship, and Fecundity. Nature Environment and Pollution Technology. An International Quarterly Scientific Journal, 11(1):79-87.
Sheetal, L. & Shate T.V. 2015. Feeding Potential of Cyprinus carpio L. and Labeo Rohita Ham. on Culex larvae (diptera:culicidae). Indian Journal of Applied Research, 5(9):464-465.
Sanyal, S. & Ghosh, S. 2014. Prey Selectivity and Efficient Biocontrol of Dengue by Guppies : Effects of Alternative Prey and Habitat Complexity. International Journal of Pure and Applied Zoology, 2(4):339-347.
Sritabutra, D., Soonwera, M. 2013. Repellent Activity of Herbal Essential Oils Against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.). Asian Pac J Trop Dis, 3(4):271-276.
Trewin, B.J., Darbro, J.M., Jansen, C.C., Schellhorn, N.A., Zalucki, M.P., Hurst, T.P., Devine, G.J. 2017. The Elimination of The Dengue Vector, Aedes aegypti, from Brisbane, Australia: The Role of Surveillance, Larval Habitat Removal and Policy. PLoS Negl Trop Dis, 11(8):e0005848.
Vinson, M.R. &Angradi, T.R. 2011. Stomach Emptiness in Fishes: Sources of Variation and Study Design Implications. Rev Fish Sci, 19(2):63-73.
WHO [World Health Organization]. 2012. Global strategy for dengue prevention and control 2012-2020. France: World Health Organization.