PENENTUAN NILAI EIGEN SUATU MATRIKS DENGAN METODE PANGKAT (POWER METHOD)
Abstract
Penelitian ini membahas mengenai penentuan nilai eigen dominan dan tak dominan suatu matriks dengan metode pangkat (power method). Metode penelitian yang digunakan adalah dengan kajian pustaka. Pada penelitian ini disimpulkan: 1) Nilai eigen dominan suatu matriks A dengan metode pangkat langsung ditentukan dengan langkah-langkah berikut. (i) Menentukan sebarang vektor taknol x0. (ii) Mencari vektor yk = Axk untuk k = 0, dan vektor xk+1 untuk k = 0 yaitu membagi yk dengan λ(k+1), elemen yk dengan nilai mutlak terbesar. (iii) Mencari vektor yk dan xk+1 untuk k dari 1 sampai n hingga λ(k) mendekati λ(k+1). (2) Nilai eigen tak dominan suatu matriks A dengan metode pangkat invers ditentukan dengan mencari nilai eigen dominan A invers dimisalkan λinvers, dan nilai eigen tak dominan A adalah 1 dibagi λinvers. (3) Nilai eigen tak dominan suatu matriks A dengan metode pangkat tergeser ditentukan dengan mencari nilai eigen dominan A yang digeser dimisalkan λshifted dengan nilai geseran s, dan nilai eigen tak dominan A adalah λshifted ditambah s. (4) Nilai eigen dominan suatu matriks A dengan metode pangkat invers tergeser ditentukan dengan mencari nilai eigen dominan A yang diinvers dan digeser dimisalkan λshiftedinvers dengan nilai s dan nilai eigen dominan A adalah 1 dibagi λshiftedinvers ditambah s.