Barrows, H. S. (1982). Problem Based Learning: A Research Perspective on Learning Interaction. Lawrence Erlbaum Associates. Inc. Publishing Industrial Aveneu. http://repository.upi.edu
Creswell, J. (2009). Research Design. Pustaka Belajar.
Crowley, M. L. (1987). The Van Hiele Model of the Development of Geometric Thought. National Council of Teachers of Mathematics.
D. Fuys., D. Geddes., R. T. (1988). The Van Hiele Model of Thinking in Geometry Among Adolescents. Journal for Research in Mathematics.
Depdiknas. (2004). Kurikulum dan Standar Isi Sekolah Dasar. Depdiknas.
EIA. (2015). Survey Internasional TIMSS. http://litbang.kemendikbud.go.id/index.php/survei-internasional-timss/tentang-timss
Hiele, V. (1958). Developing Geometric Thinking Through Activities that Begin with Play: Children Mathematics. http://abdussakir.wordpress.com./pembelajaran-geometri-dan-teori-van-hiele
Kadir. (2010). Penerapan Pembelajaran Kontektual Berbasis Potensi Pesisir Sebagai Upaya Peningkatan Kemampuan Pemecahan Masalah Matematis, Komunikasi Matematis, dan Keterampilan Sosial Siswa SMP. PPS Universitas Pendidikan Indonesia.
Mareesh, R. D. P. (2013). Effectiveness of Problem Based Learning in Mathematics. International Multidisciplinary E-Journal, III(I), ISSN: 2277-4262.
Mariani, A. (2018). Hubungan Kemampuan Membaca Pemahaman dengan Kemampuan Menyelesaikan Soal Cerita Matematika SD Kelas IV SDN Selebung Ketangga Tahun Pelajaran 2017/2018. PPS FKIP Universitas Mataram. http://fkipunram.rf.gd/ifkip3.php%3Fnim%3DE1E014004
Marwan, M. I. (2008). Meningkatkan Kemampuan Siswa Sekolah Menengah Atas dalam Menyelesaikan Soal Matematika setara PISA melalui Pendekatan Konstruktivisme. Peluang, 1(2), 51–62. http://eprints.ums.ac.id
Maya Kurniawati, Iwan Junaedi, S. M. (2015). Analisis Karakteristik Berpikir Geometri dan Kemandirian Belajar dalam Pembelajaran Fase Van Hiele Berbantuan Geometers Sketchpad. ISSN: 2252. http://journal.unnes.ac.id
Muhassanah Nur’aini, Iman Sujadi, R. (2014). Analisis Keterampilan Geometri Siswa dalam Memecahkan Masalah Geometri Berdasarkan Tingkat Berpikir Van Hiele. ISSN, 2339–1685. http://jurnal.fkip.uns.ac.id
Mulyana Sumantri, N. S. (2011). Perkembangan Peserta Didik. Universitas Terbuka.
Murniati, N. A. N. (2003). Sistem Pengelolaan Pendidikan di Sekolah. IKIP PGRI.
N. Khoiriyah, et. Al. (2013). Analisis Tingkat Berpikir Siswa Berdasarkan Teori Van Hiele pada Materi Dimensi Tiga ditinjau dari Gaya Kognitif Field Dependent dan Field Independent. Pendidikan Matematika Solusi.
Oluwa, A. F. & S. (2012). Achievement in Cooperative Versus Individualistic Goal-Structured Junior Secondary School Mathematics Classroom in Nigeria. International Journal of Mathematics Trends and Technology, 3(3).
Rumiati, S. W. (2011). Instrumen Penilaian Hasil Belajar Matematika SMP Belajar dari PISA dan TIMSS. Kementrian Pendidikan Nasional, Badan Pengembangan Sumber Daya Manusia Pendidikan dan Penjaminan Mutu Pendidikan, Pusat Pengembangan Pemberdayaan Pendidik dan Tenaga Kependidikan (PPPPTK) Matematika.
Saptono, S. (2003). Strategi Belajar Mengajar Biologi. UNNES.
Shaughnessy, B. (1986). Characterizing the Van Hiele Levels of Development in Geometry. Journal for Research in Mathematics Education, 17(1), 31–48.
Suradijono, S. (2004). Problem Based Learning. Apa dan Bagaimana? Makalah Seminar Penumbuh Inovasi Sistem Pembelajaran Pendekatan Problem Based Learning Berbasis ICT.
Van de Walle, J. (1994). Elementary School Mathematics: Teaching Devolementally (2 nd Editi). Longmans.
- Abstract viewed - 166 times
- PDF downloaded - 255 times
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright
© Unnes Journal of Mathematics Education Research, 2021
Affiliations
Ono Sudarsono
SDN 2 Pamulihan Kab. Kuningan
Awalya Awalya
Universitas Negeri Semarang, Indonesia
Iwan Junaedi
Universitas Negeri Semarang, Indonesia
How to Cite
Jurnal The Ability to Complete Story Problems Reviewed from Van Hiele's Theory in Problem Based Learning
Vol 10 No 1 (2021): June 2021
Submitted: Feb 24, 2021
Published: Jun 30, 2021
Abstract
The purpose of this study was to find the pattern of the ability to solve geometrical story questions for fourth grade students in terms of Van Hiele's theory in the problem-based learning model. The research method used was a mixed method. The research was conducted at SDN 2 Pamulihan Cirebon. The data collection techniques used were test techniques and non-test techniques. The analysis was carried out qualitatively. The results of the study were found as follows: (a) the ability of grade IV students in solving story questions is still at the level 1 or analysis level, the students have not yet reached the level of abstraction, formal deduction, and rigor, (b) the subject of the visualization level has a pattern to identify elements. -the element that is known, but cannot mention the element in question; unable to compile mathematical models, unable to plan solving problems; (c) the analysis level subject has a pattern that can identify the known and questionable elements; be able to compile a mathematical model even though it is incomplete, be able to plan solving the problem of the story problem correctly but not systematically; can state the formulas to be used to solve the problem correctly but not systematically can answer the problem of the story correctly but the arrangement is not yet systematics.