Home Environmental Factors with the Presence of Disease-Transmitting Vectors in Traditional Villages, North Lombok, West Nusa Tenggara

##plugins.themes.academic_pro.article.main##

Nur Alvira Pascawati

Abstract

Indonesia is an archipelagic country that has many tribes and traditional villages. This makes the variables that affect the breeding and production of disease-transmitting mosquito vectors very complex. This study aims to observe customary areas that still adhere to customs in arranging community-housing patterns that may have the potential for mosquito-borne diseases. This study used a cross-sectional design with a sample of 67 houses in Segenter Hamlet. Sampling technique with the simple random sampling method. Data analysis, namely univariate, bivariate, and multivariate. The presence of disease-transmitting mosquitoes in traditional villages was mostly found in traditional-type houses. The determinant factor that contributes 77.79% to the presence of disease-transmitting mosquitoes is the placement of the kitchen outside the home. This factor is reinforced by the presence of a food storage area, the absence of an insulating door in the house, the location of the bathroom outside the house, the roof of the house made of woven, the traditional type house, the mixed type house and the walls of the house made of woven. These findings contribute to the development of an early warning system for the potential spread of vector-borne diseases and the development of health tourism through house screening.

##plugins.themes.academic_pro.article.details##

How to Cite
Pascawati, N. (2023). Home Environmental Factors with the Presence of Disease-Transmitting Vectors in Traditional Villages, North Lombok, West Nusa Tenggara. Unnes Journal of Public Health, 12(2), 68-81. https://doi.org/10.15294/ujph.v12i2.68488

References

Abong’o, B., Gimnig, J. E., Omoke, D., Ochomo, E., & Walker, E. D. (2022). Screening eaves of houses reduces indoor mosquito density in rural, western Kenya. Malaria Journal, 21(1), 377. https://doi.org/10.1186/s12936-022-04397-y.
Afrane, Y. A., Lawson, B. W., Githeko, A. K., & Yan, G. (2005). Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles Gambiae (Diptera: Culicidae) in western Kenya highlands. Journal of Medical Entomology, 42(6), 974–980. https://doi.org/10.1093/jmedent/42.6.974.
Anders, K. L., Nga, L. H., Thuy, N. T. Van, Ngoc, T. Van, Tam, C. T., Tai, L. T. H., Truong, N. T., Duyen, H. T. Le, Trung, V. T., Kien, D. T. H., Wolbers, M., Wills, B., Chau, N. V. V., Tho, N. D., & Simmons, C. P. (2015). Households as Foci for Dengue Transmission in Highly Urban Vietnam. PLOS Neglected Tropical Diseases, 9(2), e0003528. https://doi.org/10.1371/journal.pntd.0003528.
Anderson, L., Simpson, D., & Stephens, M. (2014). Durable housing improvements to fight malaria transmission: Can we learn new strategies from past experience?an we learn new strategies from past experience? Atlanta: Habit for Humanity International Global Program Department https://docplayer.net/24059967-Effective-malaria-control-through-durable-housing-improvements-can-we-learn-new-strategies-from-past-experience.html
Arunachalam, N., Tana, S., Espino, F., Kittayapong, P., Abeyewickreme, W., Wai, K. T., Tyagi, B. K., Kroeger, A., Sommerfeld, J., & Petzold, M. (2010). Eco-bio-social determinants of dengue vector breeding: A multicountry study in urban and periurban Asia. Bulletin of the World Health Organization, 88(3), 173–184. https://doi.org/10.2471/BLT.09.067892
Baskoro, T., Satoto, T., Diptyanusa, A., Setiawan, Y. D., & Alvira, N. (2017). Environmental factors of the home affect the density of Aedes aegypti (Diptera: Culicidae). Jurnal Kedokteran YARSI, 25(1), 41–51. https://doi.org/10.33476/jky.v25i1.298.
Biran, A., Cameron, M., Ensink, J., Lines, J., & Smith, L. (2008). Smoke and Malaria: are Interventions to Reduce Exposure to Indoor Air Pollution Likely to Increase Exposure to Mosquitoes and Malaria? Transaksi Royal Society of Tropical Medicine and Hygiene, 101(11), 1065-1071. https://doi.org/10.1016/j.trstmh.2007.07.010.
Bowman, L. R., Donegan, S., & McCall, P. J. (2016). Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis. PLoS Neglected Tropical Diseases, 10(3), e0004551. https://doi.org/10.1371/journal.pntd.0004551
BPS. (2022). Mengulik Data Suku di Indonesia. BPS-Statistics Indonesia. https://www.bps.go.id/news/2015/11/18/127/mengulik-data-suku-di-indonesia.html
Campbell, K. M., Haldeman, K., Lehnig, C., Munayco, C. V., Halsey, E. S., Laguna-Torres, V. A., Yagui, M., Morrison, A. C., Lin, C.-D., & Scott, T. W. (2015). Weather Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes. PLOS Neglected Tropical Diseases, 9(7), e0003957. https://doi.org/10.1371/journal.pntd.0003957.
Carrasco-Tenezaca, M., Jawara, M., Abdi, M. Y., Bradley, J., Brittain, O. S., Ceesay, S., D’Alessandro, U., Jeffries, D., Pinder, M., Wood, H., Knudsen, J. B., & Lindsay, S. W. (2021). The relationship between house height and mosquito house entry: An experimental study in rural Gambia. Journal of the Royal Society Interface, 18(178), 1-10. https://doi.org/10.1098/rsif.2021.0256.
Castañeda, O., Segura, O., & Ramírez, A. N. (2011). Knowledge, attitudes and community practice during an outbreak of dengue in a town in Colombia, 2010. Revista de Salud Publica (Bogota, Colombia), 13(3), 514–527. https://doi.org/10.1590/S0124-00642011000300013.
Che-Mendoza, A., Medina-Barreiro, A., Koyoc-Cardeña, E., Uc-Puc, V., Contreras-Perera, Y., Herrera-Bojórquez, J., Dzul-Manzanilla, F., Correa-Morales, F., Ranson, H., Lenhart, A., McCall, P. J., Kroeger, A., Vazquez-Prokopec, G., & Manrique-Saide, P. (2018). House screening with insecticide-treated netting provides sustained reductions in domestic populations of Aedes aegypti in Merida, Mexico. PLoS Neglected Tropical Diseases, 12(3), e0006283. https://doi.org/10.1371/journal.pntd.0006283.
Dzul-Manzanilla, F., Ibarra-López, J., Marín, W. B., Martini-Jaimes, A., Leyva, J. T., Correa-Morales, F., Huerta, H., Manrique-Saide, P., Vazquez-Prokopec, G. M., & Day, J. (2018). Indoor resting behavior of Aedes aegypti (Diptera: Culicidae) in Acapulco, Mexico. Journal of Medical Entomology, 54(2), 501–504. https://doi.org/10.1093/jme/tjw203.
Furnival-Adams, J., Olanga, E. A., Napier, M., & Garner, P. (2021). House modifications for preventing malaria. In Cochrane Database of Systematic Reviews. 10(CD013398), 1-2. https://doi.org/10.1002/14651858.CD013398.pub3.
Gamage-Mendis, A. C., Carter, R., Mendis, C., De Zoysa, A. P. K., Herath, P. R. J., & Mendis, K. N. (1991). Clustering of malaria infections within an endemic population: Risk of malaria associated with the type of housing construction. American Journal of Tropical Medicine and Hygiene, 45(1), 77–85. https://doi.org/10.4269/ajtmh.1991.45.77
Getawen, S. K., Ashine, T., Massebo, F., Woldeyes, D., & Lindtjørn, B. (2018). Exploring the impact of house screening intervention on entomological indices and incidence of malaria in Arba Minch town, southwest Ethiopia: A randomized control trial. Acta Tropica, 181, 84–94. https://doi.org/10.1016/j.actatropica.2018.02.009
Ghozali. (2013). Analisis Multivariat Program. Semarang: Universitas Diponegoro.
Hackett, L. W., & Missiroli, A. (1932). Housing as a factor in malaria control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 26(1), 65–72. https://doi.org/10.1016/S0035-9203(32)90090-X
Harapan, H., Michie, A., Mudatsir, M., Sasmono, R. T., & Imrie, A. (2019). Epidemiology of dengue hemorrhagic fever in Indonesia: Analysis of five decades data from the National Disease Surveillance. BMC Research Notes, 12(350), 1-6. https://doi.org/10.1186/s13104-019-4379-9
Herrera-Bojórquez, J., Trujillo-Peña, E., Vadillo-Sánchez, J., Riestra-Morales, M., Che-Mendoza, A., Delfín-González, H., Pavía-Ruz, N., Arredondo-Jimenez, J., Santamaría, E., Flores-Suárez, A. E., Vazquez-Prokopec, G., & Manrique-Saide, P. (2020). Efficacy of Long-lasting Insecticidal Nets with Declining Physical and Chemical Integrity on Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 57(2), 503–510. https://doi.org/10.1093/jme/tjz176
Howell, P. I., & Chadee, D. D. (2007a). The influence of house construction on the indoor abundance of mosquitoes. Journal of Vector Ecology, 32(1), 69–74. https://doi.org/10.3376/1081-1710(2007)32[69:tiohco]2.0.co;2
Howell, P. I., & Chadee, D. D. (2007b). The influence of house construction on the indoor abundance of mosquitoes. Journal of Vector Ecology, 32(1), 69–74. https://doi.org/10.3376/1081-1710(2007)32[69:tiohco]2.0.co;2
Kaindoa, E. W., Finda, M., Kiplagat, J., Mkandawile, G., Nyoni, A., Coetzee, M., & Okumu, F. O. (2018). Housing gaps, mosquitoes and public viewpoints: A mixed methods assessment of relationships between house characteristics, malaria vector biting risk and community perspectives in rural Tanzania. Malaria Journal, 17(1), 298. https://doi.org/10.1186/s12936-018-2450-y
Killeen, G. F., Govella, N. J., Mlacha, Y. P., & Chaki, P. P. (2019). Suppression of malaria vector densities and human infection prevalence associated with scale-up of mosquito-proofed housing in Dar es Salaam, Tanzania: re-analysis of an observational series of parasitological and entomological surveys. The Lancet Planetary Health, 3(3), e132–e143. https://doi.org/10.1016/S2542-5196(19)30035-X
Kissler, S., Tedijanto, C., Goldstein, E., Grad, Y., & Lipsitch, M. (2020). Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science, 368(6493), 860–868. https://doi.org/10.1126/science.abb5793
Koyoc-Cardeña, E., Medina-Barreiro, A., Cohuo-Rodríguez, A., Pavía-Ruz, N., Lenhart, A., Ayora-Talavera, G., Dunbar, M., Manrique-Saide, P., & Vazquez-Prokopec, G. (2019). Estimating absolute indoor density of Aedes aegypti using removal sampling. Parasites and Vectors, 12(1), 250. https://doi.org/10.1186/s13071-019-3503-y
Kraemer, M. U. G., Sinka, M. E., Duda, K. A., Mylne, A. Q. N., Shearer, F. M., Barker, C. M., Moore, C. G., Carvalho, R. G., Coelho, G. E., Van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, I. R., Teng, H. J., Brady, O. J., Messina, J. P., Pigott, D. M., Scott, T. W., Smith, D. L., … Hay, S. I. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. ELife, 4(e08347), 1-18. https://doi.org/10.7554/eLife.08347
Kua, K. P., & Lee, S. W. H. (2021). Randomized trials of housing interventions to prevent malaria and Aedes-transmitted diseases: A systematic review and meta-analysis. PLOS ONE, 16(1), e0244284. https://doi.org/10.1371/journal.pone.0244284
Leedale, J., Tompkins, A. M., Caminade, C., Jones, A. E., Nikulin, G., & Morse, A. P. (2016). Projecting malaria hazard from climate change in eastern Africa using large ensembles to estimate uncertainty. Geospatial Health, 31(11), 393. https://doi.org/10.4081/gh.2016.393.
Made Wirata, I., & Ngakan Putu Sueca, dan. (2014). Konsep Arsitektur Rumah Adat Suku Sasak di Dusun Segenter, Kecamatan Bayan, Lombok Utara-NTB. Space, 1(1), 51–64. https://doi.org/10.24843/JRS.2014.v01.i01.p05
Manrique-Saide, P., Coleman, P., Mccall, P. J., Lenhart, A., Vázquez-Prokopec, G., & Davies, C. R. (2014). Multi-scale analysis of the associations among egg, larval and pupal surveys and the presence and abundance of adult female Aedes aegypti (Stegomyia aegypti) in the city of Merida, Mexico. Medical and Veterinary Entomology, 28(3), 264–272. https://doi.org/10.1111/mve.12046
Manrique-Saide, Pablo, Herrera-Bojórquez, J., Medina-Barreiro, A., Trujillo-Peña, E., Villegas-Chim, J., Valadez-González, N., Ahmed, A. M. M., Delfín-González, H., Palacio-Vargas, J., Che-Mendoza, A., Pavía-Ruz, N., Flores, A. E., & Vazquez-Prokopec, G. (2021). Insecticide-treated house screening protects against Zika-infected Aedes aegypti in Merida, Mexico. PLOS Neglected Tropical Diseases, 15(1), e0009005. https://doi.org/10.1371/journal.pntd.0009005
Morales-Pérez, A., Nava-Aguilera, E., Balanzar-Martínez, A., Cortés-Guzmán, A. J., Gasga-Salinas, D., Rodríguez-Ramos, I. E., Meneses-Rentería, A., Paredes-Solís, S., Legorreta-Soberanis, J., Armendariz-Valle, F. G., Ledogar, R. J., Cockcroft, A., & Andersson, N. (2017). Aedes aegypti breeding ecology in Guerrero: Cross-sectional study of mosquito breeding sites from the baseline for the Camino Verde trial in Mexico. BMC Public Health, 17(Suppl 1), 450. https://doi.org/10.1186/s12889-017-4293-9
Mordecai, E. A., Caldwell, J. M., Grossman, M. K., Lippi, C. A., Johnson, L. R., Neira, M., Rohr, J. R., Ryan, S. J., Savage, V., Shocket, M. S., Sippy, R., Stewart Ibarra, A. M., Thomas, M. B., & Villena, O. (2019). Thermal biology of mosquito-borne disease. In Ecology Letters (Vol. 22, Issue 10, pp. 1690–1708). Blackwell Publishing Ltd. https://doi.org/10.1111/ele.13335
Mponzi, W. P., Swai, J. K., Kaindoa, E. W., Kifungo, K., Eiras, A. E., Batista, E. P. A., Matowo, N. S., Sangoro, P. O., Finda, M. F., Mmbando, A. S., Gavana, T., Ngowo, H. S., & Okumu, F. O. (2022). Observing the distribution of mosquito bites on humans to inform personal protection measures against malaria and dengue vectors. PLOS ONE, 17(7), e0271833. https://doi.org/10.1371/journal.pone.0271833
Murray-Smith, S., Weinstein, P., & Skellf, C. (1996). Field epidemiology of an outbreak of dengue fever in Charters Towers, Queensland: Are insect screens protective? Australian and New Zealand Journal of Public Health, 20(5), 545–547. https://doi.org/10.1111/j.1467-842X.1996.tb01637.x
Ng’Ang’A, P. N., Okoyo, C., Mbogo, C., & Mutero, C. M. (2020). Evaluating effectiveness of screening house eaves as a potential intervention for reducing indoor vector densities and malaria prevalence in Nyabondo, western Kenya. Malaria Journal, 19(1), 341. https://doi.org/10.1186/s12936-020-03413-3
Ngadjeu, C. S., Ngadjeu, C. S., Doumbe-Belisse, P., Doumbe-Belisse, P., Talipouo, A., Talipouo, A., Djamouko-Djonkam, L., Djamouko-Djonkam, L., Awono-Ambene, P., Kekeunou, S., Toussile, W., Toussile, W., Wondji, C. S., Antonio-Nkondjio, C., & Antonio-Nkondjio, C. (2020). Influence of house characteristics on mosquito distribution and malaria transmission in the city of Yaoundé, Cameroon. Malaria Journal, 19(1), 53. https://doi.org/10.1186/s12936-020-3133-z
Nugroho, S. S., & Mujiyono. (2021). REVIEW Pembaruan informasi taksonomi nyamuk dan kunci identifikasi fotografis genus nyamuk (Diptera: Culicidae) di Indonesia Update mosquito taxonomic information and photographic identification key to mosquito (Diptera: Culicidae) genera in Indonesia. Jurnal Entomologi Indonesia, 18(1), 55–73. https://doi.org/10.5994/jei.18.1.55
Ogoma, S. B., Lweitoijera, D. W., Ngonyani, H., Furer, B., Russell, T. L., Mukabana, W. R., Killeen, G. F., & Moore, S. J. (2010). Screening Mosquito House Entry Points as a Potential Method for Integrated Control of Endophagic Filariasis, Arbovirus and Malaria Vectors. PLoS Neglected Tropical Diseases, 4(8), e773. https://doi.org/10.1371/journal.pntd.0000773
Ogston, S. A., Lemeshow, S., Hosmer, D. W., Klar, J., & Lwanga, S. K. (1991). Adequacy of Sample Size in Health Studies. In WHO, 47(1). https://doi.org/10.2307/2532527
Olliaro, P., Fouque, F., Kroeger, A., Bowman, L., Velayudhan, R., Santelli, A. C., Garcia, D., Skewes Ramm, R., Sulaiman, L. H., Tejeda, G. S., Morales, F. C., Gozzer, E., Garrido, C. B., Quang, L. C., Gutierrez, G., Yadon, Z. E., & Runge-Ranzinger, S. (2018). Improved tools and strategies for the prevention and control of arboviral diseases: A research-to-policy forum. PLOS Neglected Tropical Diseases, 12(2), e0005967. https://doi.org/10.1371/journal.pntd.0005967
Ondiba, I. M., Oyieke, F. A., Ong’amo, G. O., Olumula, M. M., Nyamongo, I. K., & Estambale, B. B. A. (2018). Malaria vector abundance is associated with house structures in Baringo County, Kenya. PLoS ONE, 13(6). https://doi.org/10.1371/journal.pone.0198970
Paaijmans, K. P., & Thomas, M. B. (2011). The influence of mosquito resting behaviour and associated microclimate for malaria risk. In Malaria Journal, 10(1), 183. https://doi.org/10.1186/1475-2875-10-183
Peraturan Menteri Kesehatan Republik Indonesia Tentang Pengendalian Vektor, (2010).
Rapaport, L. (2019). Study Reveals How Mosquitoes Find You and Decide to Bite . https://www.everydayhealth.com/bug-bites/study-reveals-how-mosquitoes-find-you-decide-bite/
Rayson, Y., Ridjal, A. M., & Suryasari, N. (2014). Peran Kosmologi terhadap Pembentukan Pola Permukiman Dusun Segenter. Jurnal Mahasiswa Jurusan Arsitektur Brawijaya, 2(2), 1–9. http://arsitektur.studentjournal.ub.ac.id/index.php/jma/article/view/50/50
Rozendaal, J. A. (1997). Vector Control: Methods fo use by individuals dan communities. In WHO, Geneva.
Sallam, M., Fizer, C., Pilant, A., & Whung, P.-Y. (2017). Systematic Review: Land Cover, Meteorological, and Socioeconomic Determinants of Aedes Mosquito Habitat for Risk Mapping. International Journal of Environmental Research and Public Health, 14(10), 1230. https://doi.org/10.3390/ijerph14101230
Seventer, J. M. van, & Hochberg, N. S. (2017). Principles of Infectious Diseases: Transmission, Diagnosis, Prevention, and Control. International Encyclopedia of Public Health, PMC7150340, 22–39. https://doi.org/10.1016/B978-0-12-803678-5.00516-6
SNOW, W. F. (1987). Studies of house-entering habits of mosquitoes in The Gambia, West Africa: experiments with prefabricated huts with varied wall apertures. Medical and Veterinary Entomology, 1(1), 9–21. https://doi.org/10.1111/j.1365-2915.1987.tb00318.x
Sopiyudin, D. (2017). Statistika untuk Kedokteran dan Kesehatan. Salemba Medika.
Subiyantoro, D. A., Uekita, Y., Oodaira, S., Ono, K., & Sato, K. (2019). Spatial Analysis of Sade Traditional Hamlet in Lombok Island, Indonesia: The Alteration of Sasak Tribe’s Traditional Living Space. Asian Culture and History, 11(2), 11. https://doi.org/10.5539/ach.v11n2p11
Sujarwo, W. (2019). Sasak Traditional Villages: A tourism potential and conservation effort for culture and plants. Jurnal Masyarakat Dan Budaya, 21(2), 203–220. https://doi.org/10.14203/JMB.V21I2.742
Sukawi, & Zulfikri. (2010). Adaptasi Arsitektur Sasak Berkala Teknik. Jurnal Berkala Teknik, 1(6), 339–346.
Supiyati, S., Hanum, F., & Jailani. (2019). Ethnomathematics in sasaknese architecture. Journal on Mathematics Education, 10(1), 47–57. https://doi.org/10.22342/jme.10.1.5383.47-58
Tandina, F., Doumbo, O., Yaro, A. S., Traoré, S. F., Parola, P., & Robert, V. (2018). Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. In Parasites and Vectors (Vol. 11, Issue 1, p. 467). BioMed Central Ltd. https://doi.org/10.1186/s13071-018-3045-8
Tusting, L. S., Ippolito, M. M., Willey, B. A., Kleinschmidt, I., Dorsey, G., Gosling, R. D., & Lindsay, S. W. (2015). The evidence for improving housing to reduce malaria: A systematic review and meta-analysis. In Malaria Journal (Vol. 14, Issue 1, p. 209). BioMed Central Ltd. https://doi.org/10.1186/s12936-015-0724-1
Vásquez-Trujillo, A., Cardona-Arango, D., Segura-Cardona, A. M., Portela-Câmara, D. C., Alves-Honório, N., & Parra-Henao, G. (2021). House-Level Risk Factors for Aedes aegypti Infestation in the Urban Center of Castilla la Nueva, Meta State, Colombia. Journal of Tropical Medicine, 2021. https://doi.org/10.1155/2021/8483236
Wanzirah, H., Tusting, L. S., Arinaitwe, E., Katureebe, A., Maxwell, K., Rek, J., Bottomley, C., Staedke, S. G., Kamya, M., Dorsey, G., & Lindsay, S. W. (2015). Mind the Gap: House Structure and the Risk of Malaria in Uganda. PLOS ONE, 10(1), e0117396. https://doi.org/10.1371/journal.pone.0117396
Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Belesova, K., Boykoff, M., Byass, P., Cai, W., Campbell-Lendrum, D., Capstick, S., Chambers, J., Dalin, C., Daly, M., Dasandi, N., Davies, M., Drummond, P., Dubrow, R., Ebi, K. L., Eckelman, M., … Montgomery, H. (2019). The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. In The Lancet, 394, (10211), pp. 1836–1878). https://doi.org/10.1016/S0140-6736(19)32596-6
WHO. (2017a). Keeping the vector out: housing improvements for vector control and sustainable development. World Health Organization. http://apps.who.int/bookorders.
WHO. (2017b). Global vector control response 2017–2030. (For Resear). World Health Organization. http://www.who.int/iris/handle/10665/44188
WHO. (2020). Pictorial identification key of important disease vectors in the WHO South-East Asia Region 2020. World Health Organization.
WHO. (2022, March 2). Vector-borne diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
Wilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. In PLoS Neglected Tropical Diseases, 14(1), pp. 1–31. https://doi.org/10.1371/journal.pntd.0007831
Ziba, C., Slutsker, L., Chitsulo, L., & Steketee, R. (1994). Use of malaria prevention measures in Malawian households. Trop Med Parasitol, 45(1), 70–73. https://doi.org/10.1186/s12936-015-0593-7