Finite element method based analysis of lower body structural strength on rekarya ev electric car

Authors

  • Kristian Wibisono Universitas Negeri Semarang Author
  • Widya Aryadi Universitas Negeri Semarang Author

DOI:

https://doi.org/10.15294/jmel.v13.i2.18674

Keywords:

ASTM A36, Finite Element Method, Lower Body, Stress Analysis

Abstract

In line with current technological developments, the use of electric vehicles is expected to increase due to their environmentally friendly nature—primarily because they produce no exhaust emissions. One of the critical structural components of an electric car is the lower body. The lower body of the Rekarya EV has been specifically designed to accommodate three rows of seating. This study aims to evaluate the structural strength of the Rekarya EV's lower body under static loading conditions by analyzing von Mises stress, displacement, and safety factor values. The analysis was carried out using the Finite Element Method (FEM) through Autodesk Inventor Professional 2020. A static stress analysis was performed using ASTM A36 steel material with three different thickness variations: 1.0 mm, 1.2 mm, and 1.4 mm. The resulting von Mises stress values were 72.88 MPa, 62.24 MPa, and 51.66 MPa, respectively. The corresponding displacement values were 1.366 mm, 1.295 mm, and 1.212 mm. The calculated safety factors were 3.41, 3.99, and 4.8. Additionally, the total weight of the lower body for each thickness was calculated as 88.012 kg, 100.823 kg, and 113.613 kg. The results indicate that all three thickness variations provide adequate safety factors; however, increasing material thickness significantly affects the overall weight of the structure. Therefore, a balance between strength and weight must be considered in the design process.

References

Amaluddin, M. N. H. (2022). ANALISIS KOEFISIEN HAMBATAN PADA DESAIN BODI KENDARAAN TIPE CONCEPT CAR MENGGUNAKAN PERANGKAT LUNAK CFD FLUENT. Journal of Energy, Materials, & Manufacturing Technology, 1(01), 28–33.

Andrian, B., & Marpaung, V. J. (2019). Studi Perencanaan Kendaraan Listrik E-BSW yang Ramah Lingkungan. Jurnal Inosains, 14(2), 44–49.

Chen, L., Sun, Y., & Zhao, Q. (2021). Effects of sheet thickness on structural performance of lightweight automotive steel panels. Thin-Walled Structures, 163, 107684. https://doi.org/10.1016/j.tws.2021.107684

Humaidi, M. H., Suryono, A. F., & Hestiawan, H. (2022). PENGARUH VARIASI ARUS LISTRIK TERHADAP NILAI KEKERASAN HASIL LASAN BAJA ASTM A36. Rekayasa Mekanika, 6(1), 9–14.

Iskandar, R., Arlinwibowo, J., Setiadi, R., Mujaki, A., Naryanto, R. F., Setiyawan, A., & Musyono, A. D. N. I. (2024). Impact of biodiesel blends on specific fuel consumption: A meta-analysis. IOP Conference Series: Earth and Environmental Science, 1381, 012033. https://iopscience.iop.org/article/10.1088/1755-1315/1381/1/012033

Iskandar, R., Sukoco, Sutiman, Arifin, Z., Adkha, N. F., & Rohman, J. N. (2020). The quality of vehicle exhaust gas emission in Sleman, Indonesia in 2019. Journal of Physics: Conference Series, 1456, 012030. https://doi.org/10.1088/1742-6596/1456/1/012030

Kim, J., Lee, S., & Choi, H. (2017). Design optimization of modular electric vehicle body structure for safety and weight reduction. Journal of Mechanical Science and Technology, 31(2), 979–985. https://doi.org/10.1007/s12206-017-0122-1

Lee, K., & Greenstone, M. (2021, September). Polusi Udara Indonesia dan Dampaknya Terhadap Usia Harapan Hidup. Energy Policy Institute, University Of Chicago.

Muhammad, N. (2023, October 30). Mayoritas Pekerja Komuter Indonesia Menggunakan Transportasi Pribadi. Databoks.

Niu, X., Zhang, Y., & Wang, H. (2019). Structural optimization of electric vehicle body for crashworthiness and lightweight. SAE International Journal of Passenger Cars - Mechanical Systems, 12(3), 207–214. https://doi.org/10.4271/2019-01-0487

Pribadi, A. (2021). Menteri ESDM: Cadangan Minyak Indonesia Tersedia untuk 9,5 Tahun dan Cadangan Gas 19,9 Tahun. Kementrian ESDM Republik Indonesia.

Tjiptady, B. C., Rohman, M., Sudjimat, D. A., & Ratnawati, D. (2020). Analisis tegangan, deformasi, dan retak pada gas turbine blade dengan metode elemen hingga. Jurnal Taman Vokasi, 8(2), 47–54.

Zhang, J., Wang, Y., & Li, Z. (2020). Multi-objective optimization of EV body structure based on strength, stiffness and weight. Materials Today: Proceedings, 45, 3126–3132. https://doi.org/10.1016/j.matpr.2020.11.578

Downloads

Published

2025-05-12

Article ID

18674

Issue

Section

Articles

How to Cite

Finite element method based analysis of lower body structural strength on rekarya ev electric car. (2025). JMEL : Journal of Mechanical Engineering Learning, 13(2), 48-54. https://doi.org/10.15294/jmel.v13.i2.18674