Potential utilization of renewable fuels for general internal combustion cars in the 2026 f1 engine regulations
DOI:
https://doi.org/10.15294/jmel.v13.i2.7379Keywords:
Automotive, Energy, Fuels, Formula 1, ; Literature ReviewAbstract
In the automotive sector, which produces over 60-70% of global pollution emissions, the world faces difficulties in making the switch from fossil fuels to environmentally friendly renewable energy sources. Technology has advanced significantly, and companies such as Toyota and FiA are working to improve competitiveness and attract more manufacturers to produce hybrid cars. Reducing environmental impact and greenhouse gas emissions is the goal of the Formula 1 project, which partners with ARAMCO, one of the world's largest mining companies. Using the methodology of reviewing literature on energy-efficient fuels and adapting to Formula 1 vehicle regulations, with a special emphasis on hybrid strategies, to achieve net zero emissions by 2050. Research on the use of synthetic materials in fuels such as ethanol, ethanol, butanole, dimethyl methacrylate (DMM), and oxymethylethyl (OME) 3-5 has shown promising results in reducing greenhouse gas emissions. The transition to renewable energy sources is essential to reduce global pollution.
References
Albrecht, F. G., & Nguyen, T.-V. (2020). Prospects of electrofuels to defossilize transportation in Denmark – A techno-economic and ecological analysis. Energy, 192, 116511. https://www.sciencedirect.com/science/article/pii/S0360544219322066
Andersson, Ö., & Börjesson, P. (2021). The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: Life cycle assessment and policy implications. Applied Energy, 289, 116621. https://www.sciencedirect.com/science/article/pii/S0306261921001562
Boretti, A. (2019). Energy flow of a 2018 FIA F1 racing car and proposed changes to the powertrain rules. Nonlinear Engineering, 9(1), 28–34. https://www.degruyterbrill.com/document/doi/10.1515/nleng-2018-0171/html?lang=en
Brosowski, A., Thrän, D., Mantau, U., Mahro, B., Erdmann, G., Adler, P., Stinner, W., Reinhold, G., Hering, T., & Blanke, C. (2016). A review of biomass potential and current utilisation e Status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy, 95, 257–272.
Fédération Internationale de l’Automobile. (2022). 2026 Formula 1 Power Unit Technical Regulations. https://www.fia.com/sites/default/files/fia_2026_formula_1_technical_regulations_pu_-_issue_1_-_2022-08-16.pdf
Hannula, I. (2016). Hydrogen enhancement potential of synthetic biofuels manufacture in the European context: A techno-economic assessment. Energy, 104, 199–212. https://www.sciencedirect.com/science/article/pii/S0360544216303668
Hinderks, W. J., & Wagner, A. (2020). Factor models in the German electricity market: Stylized facts, seasonality, and calibration. Energy Economics, 85, 104351. https://www.sciencedirect.com/science/article/pii/S0140988319301033
International Energy Agency. (2019). Renewables 2019: Market analysis and forecast from 2019 to 2024. https://www.iea.org/reports/renewables-2019
Iskandar, R., Arlinwibowo, J., Setiadi, R., Mujaki, A., Naryanto, R. F., Setiyawan, A., & Musyono, A. D. N. I. (2024). Impact of biodiesel blends on specific fuel consumption: A meta-analysis. IOP Conference Series: Earth and Environmental Science, 1381, 012033. https://iopscience.iop.org/article/10.1088/1755-1315/1381/1/012033
Iskandar, R., Sukoco, Sutiman, Arifin, Z., Adkha, N. F., & Rohman, J. N. (2020). The quality of vehicle exhaust gas emission in Sleman, Indonesia in 2019. Journal of Physics: Conference Series, 1456, 012030. https://doi.org/10.1088/1742-6596/1456/1/012030
Iskandar, R., Syafei, M. H. G., Bahatmaka, A., Hidayat, H., & Huda, K. (2023). Utilization of PowerPoint and YouTube as Digital-Based Learning Media: Literature Review. Jurnal Ilmiah Wahana Pendidikan, 9(20), 936–942. http://jurnal.peneliti.net/index.php/JIWP/article/view/7689
Karavalakis, G., Short, D., Hajbabaei, M., Vu, D., Villela, M., Russell, R. M., Durbin, T. D., & Asa-Awuku, A. (2013). Criteria Emissions, Particle Number Emissions, Size Distributions, and Black Carbon Measurements from PFI Gasoline Vehicles Fuelled with Different Ethanol and Butanol Blends. SAE Technical Paper. https://doi.org/10.4271/2013-01-1147
Karavalakis, G., Short, D., Vu, D., Villela, M., Asa-Awuku, A., & Durbin, T. D. (2014). Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends. Fuel, 128, 410–421. https://www.sciencedirect.com/science/article/pii/S0016236114002579
Kathrotia, T., Oßwald, P., Köhler, M., Slavinskaya, N., & Riedel, U. (2018). Experimental and mechanistic investigation of benzene formation during atmospheric pressure flow reactor oxidation of n-hexane, n-nonane, and n-dodecane below 1200 K. Combustion and Flame, 194, 426–438. https://www.sciencedirect.com/science/article/pii/S001021801830227X
Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C. N., Lim, L. L., Owen, B., & Sausen, R. (2009). Aviation and global climate change in the 21st century. Atmos. Environ., 43, 3520–3537.
Lynd, L. R., Liang, X., Biddy, M. J., Allee, A., Cai, H., Foust, T., Himmel, M. E., Laser, M. S., Wang, M., & Wyman, C. E. (2017). Cellulosic ethanol: Status and innovation. Current Opinion in Biotechnology, 45, 202–211. https://www.sciencedirect.com/science/article/pii/S0958166917300058
Marsyaelina, A., Sudiyatno, S., & Iskandar, R. (2022). Appropriate learning media for mild mentally impaired students at inclusive vocational schools: A literature review. Jurnal Pendidikan Vokasi, 12(1), 93–99. https://journal.uny.ac.id/index.php/jpv/article/view/47717
OECD-FAO. (2019). Chapter 9. Biofuels. In OECD-FAO Agricultural Outlook 2019-2028 (pp. 204–216). OECD Publishing. https://www.fao.org/4/CA4076EN/CA4076EN_Chapter9_Biofuels.pdf
Olson, A. L., Tunér, M., & Verhelst, S. (2023). A review of Isobutanol as a fuel for internal combustion engines. Energies, 16(22), 7470. https://www.mdpi.com/1996-1073/16/22/7470
Plötz, P., Funke, S. A., Jochem, P., & Wietschel, M. (2017). CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected. Scientific Reports, 7, 16493. https://www.nature.com/articles/s41598-017-16684-9
Roussos, A., Misailidis, N., Koulouris, A., Zimbardi, F., & Petrides, D. (2019). A Feasibility Study of Cellulosic Isobutanol Production—Process Simulation and Economic Analysis. Processes, 7(10), 667. https://www.mdpi.com/2227-9717/7/10/667
Su, Y., Zhang, W., Zhang, A., & Shao, W. (2020). Biorefinery: The Production of Isobutanol from Biomass Feedstocks. Applied Sciences, 10(22), 8222. https://www.mdpi.com/2076-3417/10/22/8222
Swedish Energy Agency. (2021). Reduktionsplikt för bensin och diesel – kontrollstation 2019. https://regeringen.se/rattsliga-dokument/lagradsremiss/2021/03/reduktionsplikt-for-bensin-och-diesel--kontrollstation-2019/
Yang, P. M., Lin, K. C., Lin, Y. C., Jhang, S. R., & Chen, S. C. (2016). Emission evaluation of a diesel engine generator operating with a proportion of isobutanol as a fuel additive in biodiesel blends. Appl Therm Eng, 100, 628–635. https://www.sciencedirect.com/science/article/pii/S1359431116300680
Downloads
Published
Article ID
7379Issue
Section
License
Copyright (c) 2025 Putu Dharma, Fiqih Firman Syah, Wahyu Hidayat, Yudan Lutfy Fadilah, Irlan Supralan, Muchammad Irfan Rachman (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
