SCT Tree Model to Integrate Spirituality and Computational Thinking in Science Learning

Authors

  • Suwardi Universitas Islam Negeri Salatiga Author
  • Rahmat Hariyadi Universitas Islam Negeri Salatiga Author
  • Peni Susapti Universitas Islam Negeri Salatiga Author
  • Arif Billah Universitas Islam Negeri Salatiga Author
  • Wawan Kurniawan University of Adelaide Author
  • Sigit Ari Prabowo Universitas Islam Negeri Salatiga Author

DOI:

https://doi.org/10.15294/jpii.v14i3.31172

Keywords:

SCT tree model, computational thinking, spirituality, science learning

Abstract

The integration of spiritual values and Computational Thinking (CT) in science learning at Madrasah Ibtidaiyah remains limited and has not been systematically addressed. This study aims to develop the SCT Tree Model, an innovative instructional model that integrates spirituality with CT in science learning, and to examine its effectiveness on students’ learning outcomes at Madrasah Ibtidaiyah. This study employed a mixed-methods approach with a sequential exploratory design, involving six experts, 241 teachers, and 188 students across Central Java, Indonesia. The model was validated by experts and practitioners, showing a valid category (Aiken’s V = 0.81–0.93). A pilot test indicated an increase in average scores from 79 to 94 (+15 points), while a large-scale trial demonstrated an increase from 72 to 90 (+18 points). Experimental testing across three regions confirmed that the SCT Tree Model contributed 84.5% to students’ science learning outcomes, with significant differences compared to conventional instruction. The novelty of this research lies in the systematic integration of spiritual values and CT through seven contextually based tree syntaxes. Practically, the model offers a concrete solution for Madrasah Ibtidaiyah teachers to implement holistic science learning that aligns with national curriculum policies and 21st-century educational demands.

References

Abd-El-Khalick, F., Myers, J. Y., Summers, R., Brunner, J., Waight, N., Wahbeh, N., Zeineddin, A. A., & Belarmino, J. (2017). A longitudinal analysis of the extent and manner of representations of nature of science in U.S. high school biology and physics textbooks. Journal of Research in Science Teaching, 54(1), 82–120.

Abidin, Z. (2023). The Computational Thinking in Elementary School in the Indonesia New Curriculum : A Teacher ’ s Perspective. Sekolah Dasar: Kajian Teori Dan Praktik Pendidikan, 32(2), 178–185.

Akerson, V. L., Buck, G. A., Donnelly, L. A., Nargund-Joshi, V., & Weiland, I. S. (2011). The Importance of Teaching and Learning Nature of Science in the Early Childhood Years. Journal of Science Education and Technology, 20(5), 537–549.

Andrian, R., & Hikmawan, R. (2021). The Importance of Computational Thinking to Train Structured Thinking in Problem Solving. Jurnal Online Informatika, 6(1), 113.

Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues and challenges. Computers in Human Behavior, 105, 106185.

Arip, M. A. S. M., Bakar, R. B. A., Ahmad, A. B., & Jais, S. M. (2013). The development of a group guidance module for student self-development based on gestalt theory. Procedia-Social and Behavioral Sciences, 84, 1310–1316.

Astuti, R., Nisak, N. M., Nadlif, A., & Wulan Hajjatul Zamzania, A. (2021). Animated video as a Media for Learning Science in Elementary School. Journal of Physics: Conference Series, 1779(1).

Attaftazani, M. I. (2023). Under the Veil of Tolerance: Critics on Tolerant City Index. Proceedings of The National Conference on Indonesian Philosophy and Theology, 1(2), 131–143.

Ayik, Z., & Costu, B. (2024). Instructional Texts for the Gifted: A Semiotic Approach to Teachers’ Awareness and Strategies. Journal of TUZDEV, 1(1), 69–86.

Ayık, Z., & Coştu, B. (2020). A study on demonstration of the nature of science in science textbooks: History and philosophy of science perspectives. In Jurnal Pendidikan IPA Indonesia (Vol. 9, Issue 3, pp. 451–464).

Bancong, H., Sukmawati, N., & Tadeo, D. (2023). Nature of science: A comparative analysis of the high school physics textbooks in Indonesia and Korea. International Journal of Learning, Teaching and Educational Research, 22(10), 113–129.

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016). Identifying middle school students’ challenges in computational thinking-based science learning. Research and Practice in Technology Enhanced Learning, 11(1).

Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5, F1000-Faculty.

Bell, R. L., Blair, L. M., Crawford, B. A., & Lederman, N. G. (2003). Just do it? Impact of a science apprenticeship program on high school students’ understandings of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487–509.

Bennet, A., & Bennet, D. (2007). The knowledge and knowing of spiritual learning. Vine, 37(2), 150–168.

Buchanan, M. T., & Hyde, B. (2008). Learning beyond the surface: Engaging the cognitive, affective and spiritual dimensions within the curriculum. International Journal of Children’s Spirituality, 13(4), 309–320.

Cabrera, L., Ketelhut, D. J., Mills, K., Killen, H., Coenraad, M., Byrne, V. L., & Plane, J. D. (2023). Designing a framework for teachers’ integration of computational thinking into elementary science. Journal of Research in Science Teaching, 61(6), 1326-1361.

Caskurlu, S., Yadav, A., Dunbar, K., & Santo, R. (2021). Professional development as a bridge between teacher competencies and computational thinking integration. In Computational thinking in education (pp. 136-150). Routledge.

Changwong, K., Sukkamart, A., & Sisan, B. (2018). Critical thinking skill development: Analysis of a new learning management model for Thai high schools. Journal of International studies, 11(2).

Chen, Y. T. (2012). The effect of thematic video-based instruction on learning and motivation in e-learning. International Journal of the Physical Sciences, 7(6), 957–965.

Clough, M. P., & Olson, J. K. (2008). Teaching and assessing the nature of science: An introduction. Science and Education, 17(2–3), 143–145.

Cofré, H., Vergara, C., Lederman, N. G., Lederman, J. S., Santibáñez, D., Jiménez, J., & Yancovic, M. (2014). Improving Chilean In-service Elementary Teachers’ Understanding of Nature of Science Using Self-contained NOS and Content-Embedded Mini-Courses. Journal of Science Teacher Education, 25(7), 759–783.

Das, K. R., & Imon, A. (2016). A brief review of tests for normality. American Journal of Theoretical and Applied Statistics, 5(1), 5–12.

Denning, P. J. (2017). Computational thinking in science. American Scientist Sept-Oct.

Di Forti, M., Marconi, A., Carra, E., Fraietta, S., Trotta, A., Bonomo, M., Bianconi, F., Gardner-Sood, P., O’Connor, J., & Russo, M. (2015). Proportion of patients in south London with first-episode psychosis attributable to use of high potency cannabis: a case-control study. The Lancet Psychiatry, 2(3), 233–238.

Dong, Y., Cateté, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., Joshi, D., Robinson, R., Andrews, A., Carolina, N., Carolina, N., Citadel, T., & Carolina, S. (2019). PRADA : A Practical Model for Integrating Computational Thinking in K-12 Education, 906–912.

Fianto, Z. A., Indriani, F., & L.Y. Aminas. (2023). The Development of E-Comics in Integrated Science and Religious Values for 5th Grade Students. International Journal of Learning Reformation in Elementary Education, 2(02), 68–76.

González-González, C., Infante-Moro, A., González, E. H., Guzmán-Franco, M. D., & Ruiz, L. M. (2018). Teaching computational thinking to Down syndrome students. ACM International Conference Proceeding Series, 18–24.

Grover, S., Dominguez, X., Kamdar, D., Vahey, P., Moorthy, S., Rafanan, K., & Gracely, S. (2019). Integrating computational thinking in informal and formal science and math activities for preschool learners. The 50th ACM Technical Symposium on Computer Science Education, 1257–1258.

Haga, C. S. L., Prianto, Y., & Putra, M. R. A. (2022). Toleransi Dalam Kehidupan Masyarakat di Kota Salatiga, Jawa Tengah. Binamulia Hukum, 11(2), 139–149.

Hamruni, H., & Istiningsih. (2017). The Analysis Of Material Presentation And Assessment Of Thematic Learning At State 1 Primary School Sleman Yogyakarta. IOSR Journal of Humanities and Social Science, 22(05), 23–37.

Heintz, F., Mannila, L., & Tommy, F. (2016). A Review of Models for Introducing Computational Thinking , Computer Science and Computing in K – 12 Education.

Hidayati, N. (2011). Dukungan sosial bagi keluarga anak berkebutuhan khusus. Insan, 13(1), 12–20.

Holzinger, B., Nierwetberg, F., Cosentino, L., & Mayer, L. (2021). DreamSenseMemory - A Gestalt-based dream-work approach embracing all our senses. Research in Psychotherapy: Psychopathology, Process and Outcome, 24(2), 122–129.

Huang, J., Siu, C. T. S., & Cheung, H. (2022). Longitudinal relations among teacher-student closeness, cognitive flexibility, intrinsic reading motivation, and reading achievement. Early Childhood Research Quarterly, 61, 179–189.

Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. Journal of the Learning Sciences, 15(1), 11–34.

Jäkel, F., Singh, M., Wichmann, F. A., & Herzog, M. H. (2016). An overview of quantitative approaches in Gestalt perception. Vision Research, 126, 3–8.

Jiménez-Gamero, M. D., & de Uña-Álvarez, J. (2024). Testing Poissonity of a large number of populations. Test, 33(1), 81–105.

Kashyap, R., Rinderknecht, R. G., Akbaritabar, A., Alburez-Gutierrez, D., Gil-Clavel, S., Grow, A., Kim, J., Leasure, D. R., Lohmann, S., & Negraia, D. V. (2023). Digital and computational demography. In Research handbook on digital sociology (pp. 48–86). Edward Elgar Publishing.

Kong, S., Abelson, H., & Lai, M. (2019). Computational Thinking Education. In Computational Thinking Education. Springer Singapore.

Kroes, A. D. A., & Finley, J. R. (2023). Demystifying omega squared: Practical guidance for effect size in common analysis of variance designs. Psychological Methods.

Kurniasi, E. R., Vebrian, R., & Arsisari, A. (2022). Development of Student Worksheets Based Computational Thinking for Derivatives of Algebra Function. JTAM (Jurnal Teori Dan Aplikasi Matematika), 6(1), 212.

Leicht, C., Sharp, C. A., LaBouff, J. P., Zarzeczna, N., & Esldon-Baker, F. (2022). Content Matters: Perceptions of the Science-Religion Relationship. International Journal for the Psychology of Religion, 32(3), 232–255.

Maharani, S., Nusantara, T., Asari, A. R., Malang, U. N., & Timur, J. (2020). Computational thinking pemecahan masalah di abad ke-21 (Issue December). Malang: Wade Group.

Markandan, N., Osman, K., & Halim, L. (2022). Integrating Computational Thinking and Empowering Metacognitive Awareness in Stem Education. 13(June), 1–18.

Matuk, C., Martin, R., Vasudevan, V., Burgas, K., Chaloner, K., Davidesco, I., Sadhukha, S., Shevchenko, Y., Bumbacher, E., & Dikker, S. (2021). Students Learning About Science by Investigating an Unfolding Pandemic. AERA Open, 7(1).

McBride, K. A., MacMillan, F., George, E. S., & Steiner, G. Z. (2019). The use of mixed methods in research. In Handbook of research methods in health social sciences (pp. 695–713). Springer.

Mccomas, W. F., Nouri, N., & Clough, M. P. (2020). Nature of Science and Classroom Practice: A Review of the Literature with Implications for Effective NOS Instruction (Issue August).

Mueller-Csernetzky, P., Malakhatka, E., Thuvander, L., Kragic, D., & Kabo, J. (2025). Technological Frontiers in Education: Exploring the Impact of AI and Immersive Learning. In Human-Technology Interaction: Interdisciplinary Approaches and Perspectives (pp. 291–328). Springer.

Musa, M., Arifin, A., Sukmawati, E., Zulkifli, Z., & Mahendika, D. (2023). The Relationship between Students’ Spiritual and Emotional Intelligence with Subjects Learning Outcomes. Journal on Education, 5(4), 11729–11733.

Muslih, M., & Subhi, M. R. (2022). Taxonomy Of Spiritual Quotient Learning Outcomes: an Insight From Tasawwuf Perspective. Edukasi Islami: Jurnal Pendidikan Islam, 11(03), 643.

Nunnally, J. C. (1978). An overview of psychological measurement. Clinical Diagnosis of Mental Disorders: A Handbook, 97–146.

Palts, T., & Pedaste, M. (2020). A Model for Developing Computational Thinking Skills. 19(1), 113–128.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.

Pewkam, W., & Chamrat, S. (2022). Pre-Service Teacher Training Program of STEM-based Activities in Computing Science to Develop Computational Thinking. Informatics in Education, 21(2), 311–329.

Polanía, E. F. V., Iles, A. B., Arévalo, S. A. T., & Rodríguez, Y. E. C. (2022). Existing from Relationality; educations in the experience of Andean-Amazonian knowledge of living from the heart of the Nasa and Coreguaje peoples of Colombia. Estudios Pedagogicos, 48(2), 435–449.

Preston, J. L., Coleman, T. J., & Shin, F. (2025). Spirituality of Science: Implications for Meaning, Well-Being, and Learning. Personality and Social Psychology Bulletin, 51(4), 632–643.

Puspitacandri, A., Warsono, Soesatyo, Y., Roesminingsih, E., & Susanto, H. (2020). The effects of intelligence, emotional, spiritual and adversity quotient on the graduates quality in surabaya shipping polytechnic. European Journal of Educational Research, 9(3), 1075–1087.

Rahim, N., Bakri, M. H., Fianto, B. A., Zainal, N., & Hussein Al Shami, S. A. (2023). Measurement and structural modelling on factors of Islamic Fintech adoption among millennials in Malaysia. Journal of Islamic Marketing, 14(6), 1463–1487.

Ramosaj, S. B. (2014). Systems theory and systems approach to leadership. ILIRIA international review, 4(1), 59-76.

Richardo, R., Dwiningrum, S. I. A., Wijaya, A., Retnawati, H., Wahyudi, A., Sholihah, D. A., & Hidayah, K. N. (2023). The impact of STEM attitudes and computational thinking on 21st-century via structural equation modelling. International Journal of Evaluation and Research in Education, 12(2), 571–578.

Rodríguez del Rey, Y. A., Cawanga Cambinda, I. N., Deco, C., Bender, C., Avello‐Martínez, R., & Villalba‐Condori, K. O. (2020). Developing computational thinking with a module of solved problems. Computer Applications in Engineering Education, 29(3), 506–516.

Roebben, B. (2014). Spiritual learning communities: Historical, systematic, and practical observations. Religious Education, 109(3), 301–317.

Rohmah, F. N., & Setiawan, B. (2018). Pengaruh Pemindahan Kawasan Perkantoran Pemerintah Kabupaten Boyolali Terhadap Perkembangan Perkotaan Boyolali. Jurnal Teknosains, 8(1), 75.

Rosali, D. F., & Suryadi, D. (2021). An Analysis of Students’ Computational Thinking Skills on The Number Patterns Lesson during The Covid-19 Pandemic. Formatif: Jurnal Ilmiah Pendidikan MIPA, 11(2), 217–232.

Ruggieri, D. (2017). Georg Simmel and the “Relational Turn”. Contributions to the foundation of the Lebenssoziologie since Simmel. Simmel Studies, 21(1), 43–71.

Saidin, N. D., Khalid, F., Martin, R., Kuppusamy, Y., & Munusamy, N. A. P. (2021). Benefits and challenges of applying computational thinking in education. International Journal of Information and Education Technology, 11(5), 248–254.

Schuck, P., & Feser, M. S. (2022). Science Education as a Human Right: A Systematic Review of the Literature. European Journal of Science and Mathematics Education, 10(3), 338–351.

Simuziya, N. J. (2022). A conceptual analysis of how science, religion, and culture interact and influence each other in polities. Cogent Social Sciences, 8(1).

Sofyan, M. A., & Badi’ati, A. Q. (2022). Reexamining Salatiga as a Tolerant City in Java: An Exposure of Lesser-Known Facts. Walisongo: Jurnal Penelitian Sosial Keagamaan, 30(2), 241–262.

Syarifa, N. H., & Wijaya, A. (2019). Partisipasi Masyarakat dalam Kegiatan Pemberdayaan melalui Program Kampung Tematik (Studi Kasus di Kampung Batik Kelurahan Rejomulyo Kecamatan Semarang Timur Kota Semarang).

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148(103798), 1–22.

Tsakeni, M. (2023). Primary Preservice Science Teachers’ Perceptions of Practical Work in Remote Learning Environments. Journal of Curriculum Studies Research, 5(1), 44–62.

Vasconcelos, A., Monsores, J., Almeida, T., Quadros, L., Ogasawara, E., & Quadros, J. (2023). Applying Gestalt approach as a method for teaching computer science practice in the classroom: A case study in primary schools in Brazil. Education and Information Technologies, 28(2), 2383–2403.

Voon, X. P., Wong, S. L., Wong, L. H., Khambari, M. N. M., & Syed-Abdullah, S. I. S. (2022). Developing Computational Thinking Competencies through Constructivist Argumentation Learning: A Problem-Solving Perspective. International Journal of Information and Education Technology, 12(6), 529–539.

Wang, C., Shen, J., & Chao, J. (2022). Integrating Computational Thinking in STEM Education: A Literature Review. In International Journal of Science and Mathematics Education (Vol. 20, Issue 8).

Waterman, K. P., Goldsmith, L., & Pasquale, M. (2020). Integrating Computational Thinking into Elementary Science Curriculum: an Examination of Activities that Support Students’ Computational Thinking in the Service of Disciplinary Learning. Journal of Science Education and Technology, 29(1), 53–64.

Wing, J. M. (2006). Computational Thinking. Computer Science Handbook, Second Edition, 49(3), 33–35.

Wolfengagen, V., Ismailova, L., & Kosikov, S. (2024). Computationally inspired cognitive modeling. Cognitive Systems Research, 83(July 2023), 101175.

Wong, G. K. W., & Cheung, H. Y. (2020). Exploring children’s perceptions of developing twenty-first century skills through computational thinking and programming. Interactive Learning Environments, 28(4), 438–450.

Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C. W., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., … Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. Innovation, 2(4).

Downloads

Published

2025-09-11

Article ID

31172

How to Cite

Suwardi, Hariyadi, R., Susapti, P., Billah, A., Kurniawan, W., & Ari Prabowo, S. (2025). SCT Tree Model to Integrate Spirituality and Computational Thinking in Science Learning. Jurnal Pendidikan IPA Indonesia, 14(3). https://doi.org/10.15294/jpii.v14i3.31172