Modelling Naïve Bayes for Tembang Macapat Classification
(1) Universitas Negeri Malang
(2) Universitas Negeri Malang
(3) Universitas Negeri Malang
(4) Universitas Negeri Malang
(5) Universitas Negeri Malang
(6) Universitas Negeri Malang
(7) University of South Australia
Abstract
The tembang macapat can be classified using its cultural concepts of guru lagu, guru wilangan, and guru gatra. People may face difficulties recognizing certain songs based on the established rules. This study aims to build classification models of tembang macapat using a simple yet powerful Naïve Bayes classifier. The Naive Bayes can generate high-accuracy values from sparse data. This study modifies the concept of Guru Lagu by retrieving the last vowel of each line. At the same time, guru wilangan’s guidelines are amended by counting the number of all characters (Model 2) rather than calculating the number of syllables (Model 1). The data source is serat wulangreh with 11 types of tembang macapat, namely maskumambang, mijil, sinom, durma, asmaradana, kinanthi, pucung, gambuh, pangkur, dandhanggula, and megatruh. The k-fold cross-validation is used to evaluate the performance of 88 data. The result shows that the proposed Model 1 performs better than Model 2 in macapat classification. This promising method opens the potential of using a data mining classification engine as cultural teaching and preservation media.
Keywords
Full Text:
PDFReferences
Agus, C., Saktimulya, S. R., Dwiarso, P., Widodo, B., Rochmiyati, S., & Darmowiyono, M. (2021). Revitalization of local traditional culture for sustainable development of national character building in Indonesia. In Innovations and Traditions for Sustainable Development (pp. 347–369). https://doi.org/10.1007/978-3-030-78825-4_21
Andini, S. (2013). Klasifikasi dokumen teks menggunakan algoritma Naive Bayes dengan bahasa pemprograman Java. Teknologi Informasi & Pendidikan, 6(2), 140–147.
Andriani, A. (2012). Penerapan algoritma C4.5 pada program klasifikasi mahasiswa dropout. Seminar Nasional Matematika 2012, 139–147.
Ardhana, A. P., Cahyani, D. E., & Winarno. (2019). Classification of Javanese language level on articles using multinomial Naive Bayes and N-Gram methods. Journal of Physics: Conference Series, 1306(1), 012049. https://doi.org/10.1088/1742-6596/1306/1/012049
Assiroj, P. (2018). Kajian perbandingan teknik klasifikasi algoritma C4.5, Naïve Bayes dan Cart untuk prediksi kelulusan mahasiswa (Studi kasus: STMIK Rosma Karawang). Media Informatika, 15(2), 1–17. https://doi.org/10.5281/zenodo.1184054
Daryanto, J. (2017). Pendidikan karakter dalam Serat Sanasunu karya R. Ng. Yasadipura II. Jurnal Pendidikan Dasar, 5(2), 77–81.
Dewa, C. K., & Afiahayati. (2018). Suitable CNN weight initialization and activation function for Javanese vowels classification. Procedia Computer Science, 144, 124–132. https://doi.org/10.1016/j.procs.2018.10.512
Dewati, U. (2016). Upaya ngundhakake kawasisan nulis tembang Pucung lumantar medhia gambar siswa kelas IXA SMPN 6 Trenggalek taun ajaran 2015/2016. BARADHA, 1(1), 0–13.
Diqi, M., & Muhdalifah, M. (2020). Design and building Javanese script classification in the state museum of Sonobudoyo Yogyakarta. International Journal of Informatics and Computation, 1(2), 35. https://doi.org/10.35842/ijicom.v1i2.18
Fauziyyah, F. I., Warto, W., & Sariyatun, S. (2018). Ronggowarsito’s conceptt of Islamic heosophy in serat sabdajati. International Journal of Multicultural and Multireligious Understanding, 5(2), 177. https://doi.org/10.18415/ijmmu.v5i2.237
Gaye, B., Zhang, D., & Wulamu, A. (2021). Improvement of Support Vector Machine algorithm in big data background. Mathematical Problems in Engineering, 2021, 1–9. https://doi.org/10.1155/2021/5594899
Gupta, A., Gupta, S., & Singh, D. (2005). A systematic review of classification techniques and implementation of ID3 Decision Tree Algorithm. 4th International Conference on System Modeling & Advancement in Research Trends (SMART), 144–152.
Haghighi, S., Jasemi, M., Hessabi, S., & Zolanvari, A. (2018). PyCM: Multiclass confusion matrix library in Python. Journal of Open Source Software, 3(25), 729. https://doi.org/10.21105/joss.00729
Handayani, A. N., Herwanto, H. W., Chandrika, K. L., & Arai, K. (2021). Recognition of handwritten Javanese script using backpropagation with zoning feature extraction. Knowledge Engineering and Data Science, 4(2), 117. https://doi.org/10.17977/um018v4i22021p117-127
Hatch, M. (1976). The song is ended: Changes on the use of Macapat in Central Java. Asian Music, 7(2), 59. https://doi.org/10.2307/833789
Hidayatullah, A. F., Cahyaningtyas, S., & Pamungkas, R. D. (2020). Attention-based CNN-BiLSTM for dialect identification on Javanese text. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 5(4), 317–324. https://doi.org/10.22219/kinetik.v5i4.1121
Irmade, O., & Winarto, W. (2021). Visualisasi penelitian tentang tembang Macapat dari tahun 1981 – 2021 : Analisis Bibliometrik. Gelar : Jurnal Seni Budaya, 19(1), 97–104. https://doi.org/10.33153/glr.v19i1.3789
Kasera, M., & Johari, R. (2021). Prediction using machine learning in sports: a case study. In Lecture Notes on Data Engineering and Communications Technologies, vol 54. (pp. 805–813). https://doi.org/10.1007/978-981-15-8335-3_61
Manino, E., Tran-Thanh, L., & Jennings, N. R. (2019). On the efficiency of data collection for multiple Naïve Bayes classifiers. Artificial Intelligence, 275, 356–378. https://doi.org/10.1016/j.artint.2019.06.010
Mansour, N. A., Saleh, A. I., Badawy, M., & Ali, H. A. (2022). Accurate detection of Covid-19 patients based on Feature Correlated Naïve Bayes (FCNB) classification strategy. Journal of Ambient Intelligence and Humanized Computing, 13(1), 41–73. https://doi.org/10.1007/s12652-020-02883-2
Nafalski, A., & Wibawa, A. P. (2016). Machine translation with Javanese speech levels’ classification. Informatics, Control, Measurement in Economy and Environment Protection, 6(1), 21–25. https://doi.org/10.5604/20830157.1194260
Novaeni, G. A. (2013). Menggali konsep Tri Hita Karana dalam geguritan Sekar Mulat sebagai upaya pembentukan karakter bangsa. Jumantara, Vol. 4, pp. 113–124.
Pairin M. Basir, U., & Marifatulloh, S. (2018). The Art of Tembang Macapat: Exclusiveness of the forms, value aspects, and learning approach. 222(SoSHEC), 226–230. https://doi.org/10.2991/soshec-18.2018.49
Rasyidi, M. A., Bariyah, T., Riskajaya, Y. I., & Septyani, A. D. (2021). Classification of handwritten Javanese script using random forest algorithm. Bulletin of Electrical Engineering and Informatics, 10(3), 1308–1315. https://doi.org/10.11591/eei.v10i3.3036
Saddhono, K., & Pramestuti, D. (2018). Sekar macapat pocung: study of religious values based on the local wisdom of javanese culture. EL HARAKAH (TERAKREDITASI), 20(1), 15. https://doi.org/10.18860/el.v20i1.4724
Sánchez Prieto, J., Trujillo Torres, J. M., Gómez García, M., & Gómez García, G. (2020). Gender and digital teaching competence in dual vocational education and training. Education Sciences, 10(3), 84. https://doi.org/10.3390/educsci10030084
Santosa, P. (2016). Fungsi sosial kemasyarakatan tembang Macapat (Community Social Functions of Macapat). Widyaparwa, 44(2), 97–109. https://doi.org/10.26499/wdprw.v44i2.138
Schultz, B. G., Joukhadar, Z., Nattala, U., Quiroga, M. del M., Bolk, F., & Vogel, A. P. (2021). Best practices for supervised machine learning when examining biomarkers in clinical populations. In Big Data in Psychiatry & Neurology (pp. 1–34). https://doi.org/10.1016/B978-0-12-822884-5.00013-1
Setiyadi, D. B. P. (2013). Discourse analysis of serat Kalatidha: Javanese cognition system and local wisdom. Asian Journal of Social Sciences & Humanities, 2(4), 292–300.
Setiyadi, D.B.P., & Haryono, P. (2018). Tembang macapat lyrics-based character education learning materials for secondary school students. In Character Education for 21st Century Global Citizen (1st ed., pp. 299–306). Routledge.
Setiyadi, Dwi Bambang Putut. (2010). Wacana tembang Macapat sebagai pengungkap sistem kognisi dan kearifan lokal Etnik Jawa. Kajian Linguistik Dan Sastra, 22 No.2(1), 193–210. https://doi.org/10.23917/kls.v22i2.4375
Setiyorini, A. (2016). Aplikasi tembang Macapat berbasis multimedia. Jurnal Informasi Interaktif, 1(2), 87–92.
Stockwell, G., & Reinders, H. (2019). Technology, motivation and autonomy, and teacher psychology in language learning: exploring the myths and possibilities. Annual Review of Applied Linguistics, 39, 40–51. https://doi.org/10.1017/S0267190519000084
Suardani, L. G. P., Bhaskara, I. M. A., & Sudarma, M. (2018). Optimization of feature selection using Genetic Algorithm with Naïve Bayes classification for home improvement recipients. International Journal of Engineering and Emerging Technology, 3(1), 66–70.
Suciptaningsih, O. A., Widodo, S., & Haryati, T. (2017). Teaching character education to primary school students through Javanese ethnolinguistics. 118, 747–756. https://doi.org/10.2991/icset-17.2017.124
Susanto, A., Atika Sari, C., Mulyono, I. U. W., & Doheir, M. (2021). Histogram of gradient in K-Nearest Neighbor for Javanese alphabet classification. Scientific Journal of Informatics, 8(2), 289–296. https://doi.org/10.15294/sji.v8i2.30788
Susanto, A., Sinaga, D., Sari, C. A., Rachmawanto, E. H., & Setiadi, D. R. I. M. (2018). A high performace of local binary pattern on classify Javanese character classification. Scientific Journal of Informatics, 5(1), 8. https://doi.org/10.15294/sji.v5i1.14017
Wahyudi, T. T. (2017). Macapat as a model and method of learning English-Javanese vocabulary. KnE Social Sciences, 1(3), 311. https://doi.org/10.18502/kss.v1i3.751
Wikandaru, R., Cathrin, S., Satria, E., & Rianita, D. (2020). Critical analysis of Javanese epistemology and its relevance to science development in Indonesia. Jurnal Humaniora, 32(3), 206. https://doi.org/10.22146/jh.49065
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.