Ligninolitic Enzyme Immobilization from Pleurotus ostreatus for Dye and Batik Wastewater Decolorization

R. S. Dewi, M. Ilyas, A. A. Sari

Abstract

Batik wastewater is one of the environmental problems which has become a significant water pollution problem recently. It contains a large variety of synthetic dyes, chemicals, and has high chemical oxygen demand (COD). Synthetic dyes are difficult to degrade and have recalcitrant and toxic characteristics. Dyes can be degraded by ligninolytic enzymes, including laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP). The immobilized ligninolytic enzyme is effectively used to enhance the degradation of dye wastewater. Pleurotus ostreatus, the most abundant ligninolytic enzyme source, is the candidate to regenerate fungal biomass as the bioremediation agent. Immobilization of ligninolytic enzyme using alginate was observed in this study for its efficiency to decolorize and decrease COD concentration of RBBR dye and Naphtol batik wastewater in different time periods (0, 2, 4, 6, 24, 48, 72 h) and growth conditions (static and agitated). The results show that the Lac, MnP, LnP activities of P. ostreatus are 200.43, 9.714, 12938.60 U/l, respectively. Static conditions within 48 hours exhibit the highest percentage of decolorization of dye. Ligninolytic immobilized from its condition has decolorized RBBR dye up to 75.88%, while the percentage of decolorization of agitated culture is 68.09%. This ligninolytic immobilized has decolorized about 94.867% of batik wastewater within 24 hours under a static condition. It is also able to decrease the COD level of the batik wastewater containing Naphtol dye (504 to 233 mg/l) within 24 hours under a shaking condition. Immobilization of enzyme has been a promising alternative for decolorization of dye and batik wastewater.

Keywords

COD, decolorization, immobilization, ligninolytic, Pleurotus ostreatus

Full Text:

PDF

References

Abbas, S. H., Ismail, I. M., Mostafa, T. M., &Sulaymon, A. H. (2014). Biosorption of Heavy Metals: A Review. Journal of Chemical Science and Technology, 3(4), 74-102.

Alvarez, L. H., Perez-Cruz, M. A., Rangel-Mendez, J. R., & Cervantes, F. J. (2010). Immobilized Redox Mediator on Metal-Oxides Nanoparticles and Its Catalytic Effect in a Reductive Decolorization Process. Journal of Hazardous Materials, 184(1-3), 268-272.

Angelidaki, I., Karakashev, D., Batstone, D. J., Plugge, C. M., &Stams, A. J. (2011). Biomethanation and Its Potential.In Methods in Enzymology (Vol. 494, pp. 327-351). Academic Press.

Asgher, M., Ahmed, N., & Iqbal, H. M. N. (2011). Hyperproductivity of Extracellular Enzymes from Indigenous White Rot Fungi (Phanerochaetechrysosporium) by Utilizing Agro-Wastes. BioResources, 6 (4), 4454-4467.

Awasthi, M. K., Pandey, A. K., Khan, J., Bundela, P. S., Wong, J. W., &Selvam, A. (2014). Evaluation of Thermophilic Fungal Consortium for Organic Municipal Solid Waste Composting.Bioresource technology, 168(2014), 214-221.

Babu, E., & Preetha, B. (2014). Kinetics and Equilibrium Studies on Biosorptionof Chromium (VI) by Mixed Biosorbents.Int. J. Chem. Technol. Res, 6(12), 4927-4933.

Burn, R. G. (1986). Interraction of Enzymes with Soil Minerals and Organic Colloids, In Huang, PM and Schnitzer, M. Interactoin of Soil Materials with Natural Organics and Microbes.

Chater, K. F., Biro, S., Lee, K. J., Palmer, T., & Schrempf, H. (2010). The Complex Extracellular Biology of Streptomyces. FEMS Microbiology Reviews, 34(2), 171-198.

Cichoke, A. J. (1999). The Complete Book of Enzyme Therapy. Penguin Inc.

Collins, P. J., & Dobson, A. (1997).Regulation of Laccase Gene Transcription in Trametesversicolor.Appl. Environ. Microbiol., 63(9), 3444-3450.

Couto, S. R. (2009). Dye Removal by Immobilised Fungi. Biotechnology Advances, 27(3), 227-235.

Damián-Robles, R. M., Castro-Montoya, A. J., Saucedo-Luna, J., Vázquez-Garciduenas, M. S., Arredondo-Santoyo, M., & Vázquez-Marrufo, G. (2017). Characterization of Ligninolytic Enzyme Production in White-Rot Wild Fungal Strains Suitable for Kraft Pulp Bleaching.3 Biotech, 7(5), 319.

Demirbas, A. (2009). Agricultural Based Activated Carbons for the Removal of Dyes From Aqueous Solutions: A Review. Journal of Hazardous Materials, 167(1-3), 1-9.

Faraco, V., Pezzella, C., Miele, A., Giardina, P., & Sannia, G. (2009). Bio-Remediation of Colored Industrial Wastewaters by the White-Rot Fungi Phanerochaete chrysosporium and Pleurotus ostreatus and Their Enzymes. Biodegradation, 20(2), 209-220.

Fomina, M., & Gadd, G. M. (2014).Biosorption: Current Perspectives on Concept, Definition and Application. BioresourceTechnology, 160, 3-14.

Gomi, N., Yoshida, S., Matsumoto, K., Okudomi, M., Konno, H., Hisabori, T., & Sugano, Y. (2011). Degradation of the Synthetic Dye Amaranth by the Fungus Bjerkanderaadusta Dec 1: Inference of the Degradation Pathway from an Analysis of Decolorized Products. Biodegradation, 22(6), 1239-1245.

Hanifah, (2018). Decolorization of Synthetic Dyes Reactive Black 5 by Laccase Immobilized in Hydroton. (Thesis, Universitas Gadjah Mada/Faculty of Math and Science/ Chemical Department).

Hatakka, A. (1994). Lignin-Modifying Enzymes from Selected White-Rot Fungi: Production and Role from in Lignin Degradation. FEMS Microbiology Reviews, 13(2-3), 125-135.

Homaei, A. A., Sariri, R., Vianello, F., &Stevanato, R. (2013). Enzyme Immobilization: An Update. Journal of Chemical Biology, 6 (4), 185-205.

Kartikasari, T. H., Lestari, S., & Dewi, R. S. (2012). Adsorpsi Zn dan Dekolorisasi Limbah Batik Menggunakan Limbah Baglog Pleurotusostreatus dengan Sistem Inkubasi dan Volume Limbah Batik Berbeda. Majalah Ilmiah Biologi BIOSFERA: A Scientific Journal, 29(3), 168-174.

Liu, S. (2016). Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design. Elsevier.

Mishra, A., & Malik, A. (2012). Simultaneous Bioaccumulation of Multiple Metals from Electroplating Effluent Using Aspergilluslentulus. Water Research, 46(16), 4991-4998.

Miyauchi, S., Navarro, D., Grisel, S., Chevret, D., Berrin, J. G., &Rosso, M. N. (2017). The Integrative Omicsof White-Rot Fungus Pycnoporuscoccineus Reveals Co-Regulated CAZymes for Orchestrated Lignocellulose Breakdown. PLoS One, 12(4), 1-17.

Nousiainen, P., Kontro, J., Manner, H., Hatakka, A., & Sipilä, J. (2014). Phenolic Mediators Enhance the Manganese Peroxidase Catalyzed Oxidation of Recalcitrant Lignin Model Compounds and Synthetic Lignin. Fungal Genetics and Biology, 72(2014), 137-149.

Osma, J. F., Toca-Herrera, J. L., & Rodríguez-Couto, S. (2010). Transformation Pathway of Remazol Brilliant Blue R by Immobilised Laccase. Bioresource Technology, 101(22), 8509-8514.

Sari, A. A., Tachibana, S., Muryanto, & Hadibarata, T. (2016). Development of Bioreactor Systems for Decolorizationof Reactive Green 19 Using White Rot Fungus.Desalination and Water Treatment, 57(15), 7029-7039.

Satar, R., & Husain, Q. (2009). Applications of Celite-Adsorbed White Radish (Raphanussativus) Peroxidase in Batch Process and Continuous Reactor for the Degradation of Reactive Dyes. Biochemical Engineering Journal, 46(2), 96-104.

Shuler, M. L., and Kargi, F. (1992). Bioprocess Enginering: Basic Concepts. Pretince- Hall International. Inc, New Jersey.

Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., &Wahab, R. A. (2015). An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnology & Biotechnological Equipment, 29(2), 205-220.

Sunarto, (2008). Teknik Pencelupan dan Pencapan 3. Departemen Pendidikan Nasional.

Takano, M., Nakamura, M., Nishida, A., & Ishihara, M. (2004). Manganese peroxidase from Phanerochaetecrassa WD 1694. Bulletin of FFPRI, 3(1), 7-13.

Tian, C. E., Tian, R., Zhou, Y., Chen, Q., & Cheng, H. (2013). Decolorization of Indigo Dye and Indigo Dye-Containing Textile Effluent by Ganodermaweberianum. African Journal of Microbiology Research, 7(11), 941-947.

Tischer, W., & Wedekind, F. (1999). Immobilized Enzymes: Methods and Applications. In Biocatalysis-from discovery to application. Springer, Berlin, Heidelberg.

Vyas, B. R., & Molitoris, H. P. (1995). Involvement of an Extracellular H2O2-Dependent Ligninolytic Activity of the White Rot Fungus Pleurotusostreatus in the Decolorization of Remazol Brilliant blue R. Appl. Environ. Microbiol., 61(11), 3919-3927.

Wu, J., Xiao, Y. Z., & Yu, H. Q. (2005). Degradation of Lignin in Pulp Mill Wastewaters by White-Rot Fungi on Biofilm. Bioresource Technology, 96(12), 1357-1363.

Yang, X. Q., Zhao, X. X., Liu, C. Y., Zheng, Y., &Qian, S. J. (2009). Decolorization of Azo, TriphenylmethaneandAnthraquinone Dyes by a Newly Isolated Trametes sp. SQ01 and Its Laccase. Process Biochemistry, 44(10), 1185-1189.

Zaouak, A., Noomen, A., & Jelassi, H. (2018). Gamma-Radiation Induced Decolorization and Degradation on Aqueous Solutions of Indigo Carmine Dye. Journal of Radioanalytical and Nuclear Chemistry, 317(1), 37-44.

Zavarzina, A. G., & Zavarzin, A. A. (2006). Laccase and Tyrosinase Activities in Lichens.Microbiology, 75(5), 546-556.

Refbacks

  • There are currently no refbacks.