Bioaccumulation of Zn and 137Cs in Glauconomya virens (Linnaeus, 176) Upon Exposure to Sigle and Mixture of Zn or 137Cs and Salinity

B. Budiawan, H. Suseno, M. E. Puteri, W. R. Prihatiningsih, M. Makmur

Abstract

This study aims to determine the effect of concentrations and salinity of seawater on the bioaccumulation of zinc and cesium in the Glauconomya virens. Salinity conditions and contaminant concentrations in the marine environment can change due to weather and other inputs.  A biokinetic experiment was carried out using a single compartment approach that used radiotracer 65Zn and 137Cs.  The experiments conducted were biota collection, acclimatization, bioaccumulation, and elimination. Acclimatization aims for the adaptation of biota in an experimental environment. Bioaccumulation was by placing the biota in an aquarium containing seawater media spiked by  65Zn, Zn, and 137Cs radiotracer contaminants. The elimination process was the release of contaminants from the body of the biota by placing them in clean and flowing seawater. The experimental results show that the uptake and elimination of Zn and Cs were influenced by these two parameters (water concentration and salinity). The highest value of Concentration Factor (CF) for Zn was 11.14 ml.g-1 under influences its concentration of  0.7 ppm in water.  In the depuration process, Zn maintained by G virens were  39.44; 31.17; 23.62; and 23.92% after these organisms accumulate this element from seawater containing 0.1; 0.3, 0.5, and 0.7 ppm, respectively. The highest of 137Cs  under influences its concentration of 3 Bg.ml-1 reached 2.65 mL.g-1. The effect of salinity is directly proportional to the factor value of Zn and 137Cs concentration.

Keywords

bioaccumulation; glauconomya virens; zinc; cesium

Full Text:

PDF

References

Abdullah, A., Nurjanah, N., Hidayat, T., & Gifari, A. (2016). Characterize Fatty Acid of Babylonia spirata, Meretrix meretrix, Pholas dactylus. International Journal of Chemical and Biomolecular Science, 2(1), 38–42.

Ashraf, M. A., Akib, S., Maah, M. J., Yusoff, I., & Balkhair, K. S. (2014). Cesium-137: Radio-Chemistry, Fate, and Transport, Remediation, and Future Concerns. Critical Reviews in Environmental Science and Technology, 44(15), 1740–1793.

Baramanda, T. A., Budiawan, Bakri, R., & Suseno, H. (2020). Cs-137 radionuclide bioaccumulation study in gold fish (Cyprinus carpio) through freshwater path with variations of potassium ion concentration (K+). IOP Conference Series: Materials Science and Engineering, 902(1), 1–6.

Cravo, A., & Bebianno, M. J. (2005). Bioaccumulation of metals in the soft tissue of Patella aspera: Application of metal/shell weight indices. Estuarine, Coastal and Shelf Science, 65(3), 571–586.

Fowler, S. W., Small, L. F., & Dean, J. M. (1971). Experimental studies on elimination of zinc-65, cesium-137 and cerium-144 by euphausiids. Marine Biology, 8(3), 224–231.

Hansman, R. L., Metian, M., Pouil, S., Oberhänsli, F., Teyssié, J. L., & Swarzenski, P. W. (2018). A double-tracer radioisotope approach to assess simultaneous bioaccumulation of caesium in the olive flounder Paralichthys olivaceus. Journal of Environmental Radioactivity, 190 (May), 141–148.

Herve-Fernandez, P., Houlbrque, F., Boisson, F., Mulsow, S., Teyssie, J. L., Oberhaensli, F., … Jeffree, R. (2010). Cadmium bioaccumulation and retention kinetics in the Chilean blue mussel Mytilus chilensis: Seawater and food exposure pathways. Aquatic Toxicology, 99(4), 448–456.

Jeffree, R. A., & Johansen, M. P. (2017). Experimental comparison of the bioaccumulation of anthropogenic radionuclides by egg and juvenile life stages of a small shark. Journal of Environmental Radioactivity, 178, 430–438.

Jeffree, R. A., Oberhansli, F., & Teyssie, J. L. (2010). Phylogenetic consistencies among chondrichthyan and teleost fishes in their bioaccumulation of multiple trace elements from seawater. Science of the Total Environment, 408(16), 3200–3210.

Ke, C., Yu, K., Lam, P. K. ., & Wang, W. (2000). Uptake and depuration of cesium in the green mussel Perna viridis. Marine Biology, 137, 567–575.

Koropitan, A. F., & Ikeda, M. (2016). Influences of Physical Processes and Anthropogenic Influx on Biogeochemical Cycle in the Java Sea: Numerical Model Experiment. Procedia Environmental Sciences, 33, 532–552.

Krężel, A., & Maret, W. (2016). The biological inorganic chemistry of zinc ions. Archives of Biochemistry and Biophysics, 611, 3–19.

Lin, Y., Wang, X., Wang, B., Mohamad, O., & Wei, G. (2012). Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete. Ecotoxicology and Environmental Safety, 77, 7–17.

McGeer, J. C., Brix, K. V, Skeaff, J. M., DeForest, D. K., Brigham, S. I., Adams, W. J., & Green, A. (2003). Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environmental Toxicology and Chemistry / SETAC, 22(5), 1017–1037.

Melinda, K., Suseno, H., & Prihatini, W. (2017). Bioaccumulation and distribution of 137 Cesium in the Humpback Grouper Fish (Cromileptes altivelis). Jurnal Nasional, 7(2), 180-184.

Passarelli, M. C., Ray, S., Cesar, A., DelValls, T. A., & Riba, I. (2018). Effects of CO2enrichment on metal bioavailability and bioaccumulation using Mytilus galloprovincialis. Marine Pollution Bulletin, 133(February), 124–136.

Periáñez, R., Bezhenar, R., Brovchenko, I., Duffa, C., Iosjpe, M., Jung, K. T., … de With, G. (2016). Modelling of marine radionuclide dispersion in IAEA MODARIA program: Lessons learnt from the Baltic Sea and Fukushima scenarios. Science of the Total Environment, 569, 594–602.

Pouil, S., Oberhänsli, F., Swarzenski, P. W., Bustamante, P., & Metian, M. (2018). The role of salinity in the trophic transfer of137Cs in euryhaline fish. Journal of Environmental Radioactivity, 189(May), 255–260.

Pouil, S., Teyssié, J., Rouleau, C., Fowler, S. W., Metian, M., Bustamante, P., & Warnau, M. (2017). Journal of Experimental Marine Biology and Ecology Comparative study of trophic transfer of the essential metals Co and Zn in two tropical fish : A radiotracer approach. Journal of Experimental Marine Biology and Ecology, 486, 42–51.

Prihatiningsih, W. R., Suseno, H., Zamani, N. P., & Soedharma, D. (2016). Temperature and salinity effects on bioaccumulation, gill structure, and radiation dose estimation in the milkfish Chanos chanos exposed to 137 Cs. Atom Indonesia, 42(3), 129-135.

Rainbow, P. S., & Luoma, S. N. (2011). Metal toxicity, uptake and bioaccumulation in aquatic invertebrates-Modelling zinc in crustaceans. Aquatic Toxicology, 105(3–4), 455–465.

Reinardy, H. C., Teyssie, J., Jeffree, R. A., Copplestone, D., Henry, T. B., & Jha, A. N. (2011). Science of the Total Environment Uptake , depuration , and radiation dose estimation in zebra fi sh exposed to radionuclides via aqueous or dietary routes. Science of the Total Environment, 409(19), 3771–3779.

Stumm, W., & Morgan, J. J. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Aquatic chemistry (Third Edit). New York: John Wiley & Sons, Inc.

Sun, M., Liu, G., Lin, H., Zhang, T., & Guo, W. (2018). Effect of salinity on the bioaccumulation and depuration of cadmium in the pacific cupped oyster, Crassostrea gigas. Environmental toxicology and pharmacology, 62, 88-97.

Suseno, H., Budiawan, B., Muslim, M., Makmur, M., & Yahya, M. N. (2018). Present status of marine radioecology in Jakarta Bay. Atom Indonesia, 44(2), 63-67.

Suseno, H., Hudiyono, S., & Muslim, M. (2016). Elimination of Chloramphenicol by Tiger Shrimp (Penaeus monodon) and White Shrimp (Litopenaeus vannamei). HAYATI Journal of Biosciences, 23(3).

Wadige, C. P. M., Taylor, A. M., Maher, W. A., & Krikowa, F. (2014). Bioavailability and toxicity of zinc from contaminated freshwater sediments: Linking exposure-dose–response relationships of the freshwater bivalve Hyridella australis to zinc-spiked sediments. Aquatic toxicology, 156, 179-190.

Wang, W. X. (2016). Bioaccumulation and biomonitoring. In Marine Ecotoxicology (pp. 99-119). Academic Press.

WHO. (1983). Arch Moll. 105:1-423., 242(687), 353–362. Retrieved from http://www.fao.org/3/w7191e/w7191e32.pdf

Refbacks

  • There are currently no refbacks.