Biodiversity of Drosophila sp. from the Natural Environment based on the Cytochrome Oxidase subunit 1 Gene

M. Wurarah, Y. S. Mokosuli, H. M. Sumampouw

Abstract

Research on insect phylogenetics is intricated by their similar morphology and significant genetic diversity. The cytochrome oxidase subunit 1 (CO1) gene is the most widely utilized mitochondrial DNA gene in the identification and study of animal molecular biodiversity. This study aims to identify and reconstruct the phylogeny of fruit flies from North Sulawesi using the cytochrome oxidase subunit 1 (CO1) gene. Fruit flies were obtained from 5 (five) areas in North Sulawesi, namely Siau (L1), North Minahasa (L2), Minahasa (L3), Southeast Minahasa (L4), and Bolaang Mongondow (L5). Fruit fly imago limbs were used as a tissue source for genomic DNA extraction. Genomic DNA extraction was carried out using the Quick-DNA™ Miniprep Kit manufacture protocol. The CO1 gene amplification was carried out by the PCR method, and the visualization of the amplicons was carried out by the 1.5% gel electrophoresis method. Nucleotide sequencing used a sequencing service at First BASE Singapore with a bidirectional sequencing method. CO1 gene amplification of each sample was visualized at 690 bp to 702 bp length. After analyzing the CO1 gene concession area using the MEGA XI program, it is found that Drosophila at L1 has 702 bp, L2 has 703 bp, L3 has 698 bp, L4 has 700 bp, and L5 has 697 bp. Based on alignment analysis using the BLAST method, it is found that the L1 fruit fly has a similarity rate of 99.29% (E=0.0) to Drosophila parapallidosa [MK659836.1]. The L2 fruit fly also has a similarity rate of 96.86% with Drosophila parapallidosa [MK659836.1]. The L3 fruit fly has a similarity level of 94.94% with Drosophila parapallidosa [MK659836.1]. The L4 fruit fly has a similarity rate of 94.43% with Drosophila parapallidosa [MK659836.1]. However, the L5 fruit fly shows a similarity rate of 96.86% with Drosophila rubida [EU493593.1]. The reconstruction results with the MEGA XI program using the Minimum Evolution model obtain two monophyletic groups where the fruit fly in Bolaang Mongondow is in a monophyletic group different from other fruit flies. The results of this study prove the variation in fruit fly species in North Sulawesi based on the identification of the CO1 gene.

Keywords

CO1 gene; fruit flies; phylogeny reconstruction; North Sulawesi

Full Text:

PDF

References

Andújar, C., Arribas, P., Yu, D. W., Vogler, A. P., & Emerson, B. C. (2018). Why the COI barcode should be the community DNA metabarcode for the metazoa.

Andreazza, F., Bernardi, D., Dos Santos, R. S. S., Garcia, F. R. M., Oliveira, E. E., Botton, M., & Nava, D. E. (2017). Drosophila suzukii in southern neotropical region: current status and future perspectives. Neotropical entomology, 46, 591-605.

Antil, S., Abraham, J. S., Sripoorna, S., Maurya, S., Dagar, J., Makhija, S., ... & Toteja, R. (2023). DNA barcoding, an effective tool for species identification: a review. Molecular Biology Reports, 50(1), 761-775.

Aminisarteshnizi, M. (2022). Comparison between two different DNA extraction methods to obtain high DNA quality from Astacus leptodactylus. Egyptian Journal of Aquatic Biology and Fisheries, 26(2), 289-294.

Asada, N., Sun, H., Hayashi, K., Inomata, K., Harada, Y., Sugino, E., ... & Nevo, E. (2015). Microevolution of Mitochondrial Cytochrome oxidase subunit I in Drosophila melanogaster at “Evolution Canyon”, Israel. Journal of Life Sciences, 9, 457-464.

Bevers, R. P., Litovchenko, M., Kapopoulou, A., Braman, V. S., Robinson, M. R., & Auwerx, J. (2019). Mitochondrial haplotypes affect metabolic phenotypes in the Drosophila Genetic Reference Panel. Nature Metabolism, 1(12), 1226-1242.

Bitner, K., Rutledge, G. A., Kezos, J. N., & Mueller, L. D. (2021). The effects of adaptation to urea on feeding rates and growth in Drosophila larvae. Ecology and evolution, 11(14), 9516-9529.

Camus, M. F., Wolff, J. N., Sgrò, C. M., & Dowling, D. K. (2017). Experimental support that natural selection has shaped the latitudinal distribution of mitochondrial haplotypes in Australian Drosophila melanogaster. Molecular Biology and Evolution, 34(10), 2600-2612.

Curtsinger, J. W. (2020). Terminal life history: late-life fecundity and survival in experimental populations of Drosophila melanogaster. Biogerontology, 21(6), 721-730.

Dapporto, L., Cini, A., Vodă, R., Dincă, V., Wiemers, M., Menchetti, M., ... & Vila, R. (2019). Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Molecular Ecology Resources, 19(6), 1623-1636.

Doorenweerd, C., San Jose, M., Geib, S., Dupuis, J., Leblanc, L., & Barr, N. (2022). A phylogenomic approach to species delimitation in the mango fruit fly (Bactrocera frauenfeldi) complex: A new synonym of an important pest species with variable morphotypes (Diptera: Tephritidae). Systematic Entomology, 48(1), 10-22

Dong, Z., Wang, Y., Li, C., Li, L., & Men, X. (2021). Mitochondrial DNA as a molecular marker in insect ecology: Current status and future prospects. Annals of the Entomological Society of America, 114(4), 470-476.

Dzaki, N., & Azzam, G. (2019). Reduced Expression of Glycerol-3-phosphate dehydrogenase (Gpdh) in Drosophila melanogaster Pasha-Mutants Suggests a miRNA-dependency in its Regulation. Tropical Life Sciences Research, 30(2), 191-200.

Ishikawa, Y., Kimura, M. T., & Toda, M. J. (2022). Biology and ecology of the Oriental flower-breeding Drosophila elegans and related species. Fly, 16(1), 207-220.

Irion, U., & Nüsslein-Volhard, C. (2022). Developmental genetics with model organisms. Proceedings of the National Academy of Sciences, 119(30), e2122148119.

Jezovit, J. A., Levine, J. D., & Schneider, J. (2017). Phylogeny, environment and sexual communication across the Drosophila genus. Journal of Experimental Biology, 220(1), 42-52.

Jones, P. L., Divoll, T. J., Dixon, M. M., Aparicio, D., Cohen, G., Mueller, U. G., & Page, R. A. (2020). Sensory ecology of the frog-eating bat, Trachops cirrhosus, from DNA metabarcoding and behavior. Behavioral Ecology, 31(6), 1420-1428.

Kanan, M., Salaki, C., & Mokosuli, Y. S. (2020). Molecular Identification of Bacterial species from Musca domesfica L. and Chrysomya megachepala L. Luwuk City, Central Sulawesi, Indonesia. J. Pure Appl Microbiol, 14(2), 1595-1607.

Karthika, K., Anand, P. P., Seena, S., & Shibu Vardhanan, Y. (2021). Wing phenotypic plasticity, quantitative genetics, modularity, and phylogenetic signal analysis revealed the niche partitioning in two fruit fly species, Bactrocera dorsalis and Zeugodacus cucurbitae. International Journal of Tropical Insect Science, 1-18.

Kellermann, V., & van Heerwaarden, B. (2019). Terrestrial insects and climate change: adaptive responses in key traits. Physiological Entomology, 44(2), 99-115.

Kellermann, V., Hoffmann, A. A., Overgaard, J., Loeschcke, V., & Sgro, C. M. (2018). Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proceedings of the Royal Society B: Biological Sciences, 285(1874), 20180048.

Kirse, A., Bourlat, S. J., Langen, K., Zapke, B., & Zizka, V. M. (2023). Comparison of destructive and nondestructive DNA extraction methods for the metabarcoding of arthropod bulk samples. Molecular Ecology Resources, 23(1), 92-105.

Koshikawa, S. (2020). Evolution of wing pigmentation in Drosophila: Diversity, physiological regulation, and cis‐regulatory evolution. Development, growth & differentiation, 62(5), 269-278.

Khali, S., Khan, M. Z., Asha, K., Topal, P., & Fartyal, R. S. (2022, August). Biodiversity and Molecular Characterization of Drosophilids (Drosophilidae: Diptera) from Indian Himalayan Region. In Proceedings of the Zoological Society (pp. 1-14). Springer India.

Kurbalija Novičić, Z., Sayadi, A., Jelić, M., & Arnqvist, G. (2020). Negative frequency dependent selection contributes to the maintenance of a global polymorphism in mitochondrial DNA. BMC evolutionary biology, 20, 1-9.

Li, F., Rane, R. V., Luria, V., Xiong, Z., Chen, J., Li, Z., & Zhang, G. (2022). Phylogenomic analyses of the genus Drosophila reveals genomic signals of climate adaptation. Molecular Ecology Resources, 22(4), 1559-1581.

Marquina, D., Buczek, M., Ronquist, F., & Łukasik, P. (2021). The effect of ethanol concentration on the morphological and molecular preservation of insects for biodiversity studies. PeerJ 9:e10799.

Mege, R. A., Sumampouw, H. S., Oka, D. N., Manampiring, N., & Mokosuli, Y. S. (2020). The Distribution of COVID 19 based on Phylogeny Construction in Silico Sequences SARS-CoV-2 RNA at Genbank NCBI. Walailak Journal of Science and Technology, 17(8), 893-902.

McGirr, J. A., Johnson, L. M., Kelly, W., Markow, T. A., & Bono, J. M. (2017). Reproductive Isolation among Drosophila arizonae from geographically isolated regions of North America. Evolutionary Biology, 44, 82-90.

Mirzoyan, Z., Sollazzo, M., Allocca, M., Valenza, A. M., Grifoni, D., & Bellosta, P. (2019). Drosophila melanogaster: a model organism to study cancer. Frontiers in genetics, 10, 51.

Nourmohammad, A., Rambeau, J., Held, T., Kovacova, V., Berg, J., & Lässig, M. (2017). Adaptive evolution of gene expression in Drosophila. Cell reports, 20(6), 1385-1395.

O’Grady, P. M., & DeSalle, R. (2018). Phylogeny of the genus Drosophila. Genetics, 209(1), 1-25.

Palozzi, J. M., Jeedigunta, S. P., & Hurd, T. R. (2018). Mitochondrial DNA purifying selection in mammals and invertebrates. Journal of molecular biology, 430(24), 4834-4848.

Parakatselaki, M. E., & Ladoukakis, E. D. (2021). mtDNA heteroplasmy: origin, detection, significance, and evolutionary consequences. Life, 11(7), 633.

Piper, A. M., Cunningham, J. P., Cogan, N. O., & Blacket, M. J. (2022). DNA metabarcoding enables high-throughput detection of spotted wing drosophila (Drosophila suzukii) within unsorted trap catches. Frontiers in Ecology and Evolution, 10, 119.

Rach, J., Bergmann, T., Paknia, O., DeSalle, R., Schierwater, B., & Hadrys, H. (2017). The marker choice: Unexpected resolving power of an unexplored CO1 region for layered DNA barcoding approaches. PloS one, 12(4), e0174842.

Rand, D. M., Mossman, J. A., Spierer, A. N., & Santiago, J. A. (2022). Mitochondria as environments for the nuclear genome in Drosophila: mitonuclear G× G× E. Journal of Heredity, 113(1), 37-47.

Revolson, A. M., Mokosuli, Y. S., Debby, J. J. R., Hetie Adil, E., Rompas, C., Manampiring, N., & Montolalu, M. (2019). Philogenic Relationship of Wild Pigs and Local Pig from North Sulawesi Based on the Growth Hormone Gene (GH Gene). In Materials Science Forum (Vol. 967, pp. 71-82).

Robinson, C. E., Thyagarajan, H., & Chippindale, A. K. (2023). Evolution of reproductive isolation in a long-term evolution experiment with Drosophila melanogaster: 30 years of divergent life history selection. bioRxiv, 2023-02.

Rombot, V and Mokosuli YS. (2021). The Metagenomic Analysis of Potential Pathogenic Emerging Bacteria in Fleas. Pakistan Journal of Biological Sciences: PJBS, 24(10), 1084-1090.

Rudman, S. M., Greenblum, S. I., Rajpurohit, S., Betancourt, N. J., Hanna, J., & Schmidt, P. (2022). Direct observation of adaptive tracking on ecological time scales in Drosophila. Science, 375(6586), eabj7484.

Russell, J. E., Saum, M., & Williams, R. (2022). Elevated Substitution Rates Among Wolbachia-infected Mosquito Species Results in Apparent Phylogenetic Discordance. Georgia Journal of Science, 80(2), 8.

Saenz Manchola, O. F., Virrueta Herrera, S., D’Alessio, L. M., Yoshizawa, K., Garcia Aldrete, A. N., & Johnson, K. P. (2021). Mitochondrial genomes within bark lice (Insecta: Psocodea: Psocomorpha) reveal novel gene rearrangements containing phylogenetic signal. Systematic Entomology, 46(4), 938-951.

Song, X., Wang, J., & Wang, X. (2021). Species‐specific COI primers for rapid identification of Bemisia tabaci Mediterranean (MED) species. Journal of Applied Entomology, 145(10), 1029-1038.

Suddin, S., Mokosuli, Y. S., Marcelina, W., Orbanus, N., & Ardi, K. (2019). Molecular barcoding based 16S rRNA gene of Thermophilic bacteria from vulcanic sites, Linow Lake, Tomohon. In Materials Science Forum (Vol. 967, pp. 83-92).

Suvorov, A., Kim, B. Y., Wang, J., Armstrong, E. E., Peede, D., & Comeault, A. A. (2022). Widespread introgression across a phylogeny of 155 Drosophila genomes. Current Biology, 32(1), 111-123.

Sittenthaler, M., Fischer, I., Chovanec, A., Koblmüller, S., Macek, O., & Haring, E. (2023). DNA barcoding of exuviae for species identification of Central European damselflies and dragonflies (Insecta: Odonata). Journal of Insect Conservation, 1-16.

Stockton, D. G., Brown, R., & Loeb, G. M. (2019). Not berry hungry? Discovering the hidden food sources of a small fruit specialist, Drosophila suzukii. Ecological Entomology, 44(6), 810-822.

Xiao, C., Bayat Fard, N., Brzezinski, K., Robertson, R. M., & Chippindale, A. K. (2019). Experimental evolution of response to anoxia in Drosophila melanogaster: recovery of locomotion following CO2 or N2 exposure. Journal of Experimental Biology, 222(14), jeb199521.

Wilson, R. J., & Fox, R. (2021). Insect responses to global change offer signposts for biodiversity and conservation. Ecological Entomology, 46(4), 699-717.

Wolff, J. N., Nafisinia, M., Sutovsky, P., & Ballard, J. W. O. (2013). Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans. Heredity, 110(1), 57-62.

Yamaguchi, M., Yoshida, H. (2018). Drosophila as a Model Organism. In: Yamaguchi, M. (eds) Drosophila Models for Human Diseases. Advances in Experimental Medicine and Biology, 1076.

Refbacks

  • There are currently no refbacks.