Differences in the Triplechem Learning Model with Balinese Local Wisdom and the Discovery Learning Model in Influencing Students' Visual Literacy and Mental Models about Acid-Base Solutions

I. W. Suja, I. M. G. Jayadiningrat, I. N. S. Ardiyasa

Abstract

This study intends to investigate the differences in the effect of the TripleChem learning model with Balinese local wisdom and the Discovery Learning model on students' visual literacy and chemical mental models about acid-base solutions. The research was designed using a quantitative approach and classified as quasi-experimental. The research design used was a pretest-posttest non-equivalent control group design. The population of this study was 206 junior high school students with Balinese cultural backgrounds with various beliefs (religions), namely Hindus, Muslims, and Christians. Cultural content will cause learning to be more contextual, more interesting, and bring students closer to their own culture. The sampling was done using a simple random sampling technique, and obtained two sample classes, one class as the experimental group, and the other as the control group.  The experimental group was taught using the TripleChem learning model containing Balinese local wisdom, while the control group was taught using the Discovery Learning model. The dependent variable in this research was visual literacy and students' mental models of chemistry. Data collection was carried out using a visual literacy test (10 items in total; item validity between 0.520 – 0.893; and test reliability coefficient of 0.895) and a chemical mental model test (8 items in total; item validity between 0.669 – 0.878; and test reliability coefficient of 0.922). Data analysis was carried out descriptively and MANCOVA. The results show that the TripleChem learning model is more effective to be applied to improve students' visual literacy and mental models about acid-base solutions compared to the Discovery Learning model. This condition is caused by the syntax of the TripleChem learning model which is more sequential and structured to build students' visual literacy and chemistry mental models. The application of the TripleChem learning model in chemistry learning needs to be supported by laboratory facilities to display chemical macroscopic phenomena and animated media to explain these phenomena at the level of matter particles.

Keywords

acid-base solution; mental model; visual literacy

Full Text:

PDF

References

Atmojo, S. E., Kurniawati, W., & Muhtarom, T. (2019). Science Learning Integrated Ethnoscience to increase Scientific Literacy and Scientific Character. In Journal of Physics: Conference Series (Vol. 1254, No. 1, p. 012033). IOP Publishing.

Avargil, S., Herscovitz, O., & Dori, Y. J. (2012). Teaching thinking skills in context-based learning: Teachers’ challenges and assessment knowledge. Journal of science education and technology, 21, 207-225.

Azhara, F., Dahlan, D., & Tewa, Y. (2020). Efektivitas model pembelajaran discovery learning untuk meningkatkan hasil belajar kimia siswa pada materi pokok asam basa kelas XI IPA di SMA Negeri 1 Loghia. Jurnal Pendidikan Kimia FKIP UHO, 5(3), 117–126.

Coman, C., Țîru, L. G., Meseșan-Schmitz, L., Stanciu, C., & Bularca, M. C. (2020). Online teaching and learning in higher education during the coronavirus pandemic: Students’ perspective. Sustainability, 12(24), 10367.

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, Quantitative, and mixed Methods Approaches. Sage publications.

Cunha, S.G.D., Dias, D.D.V, & Streit, L. (2023). The electronic structure of the atom: (Mis)interpretations of quantum concepts by Brazilian university chemistry students. Journal of Chemical Education, 100(2), 627-637.

Dewi, C. A., Khery, Y., & Erna, M. (2019). An ethnoscience study in chemistry learning to develop scientific literacy. Jurnal Pendidikan IPA Indonesia, 8(2), 279-287.

Dewi, I. G. A. K. K., Suja, I. W., & Sudiatmika, A. R. (2021). Modul kimia berbasis TripleChem untuk meningkatkan model mental peserta didik. Jurnal Pendidikan Kimia Undiksha, 5(2), 60–66.

Drechsler, M., & Van Driel, J. (2008). Experienced teachers’ pedagogical content knowledge of teaching acid–base chemistry. Research in science education, 38, 611-631.

Farheen, A., & Lewis, S. E. (2021). The impact of representations of chemical bonding on students’ predictions of chemical properties. Chemistry Education Research and Practice, 22(4), 1035-1053.

Fraenkel, J. R. & Wallen, N. (2006). How to Design and Evaluate Research in Education. (6th Ed.). New York: McGraw-Hill Companies, Inc.

Franco-Mariscal, A. J., Oliva-Martínez, J. M., & Almoraima Gil, M. L. (2015). Students’ perceptions about the use of educational games as a tool for teaching the periodic table of elements at the high school level. Journal of Chemical Education, 92(2), 278-285.

Hikmawati, H., Suastra, I. W., & Pujani, N. M. (2021). Ethnoscience-based science learning model to develop critical thinking ability and local cultural concern for junior high school students in Lombok. Jurnal Penelitian Pendidikan IPA, 7(1), 60–66.

Kaberman, Z., & Dori, Y. J. (2009). Question posing, inquiry, and modeling skills of chemistry students in the case-based computerized laboratory environment. International Journal of Science and Mathematics Education, 7, 597–625.

Kelly, R.M. (2014). Using variation theory with metacognitive monitoring to develop insights into how students learn from molecular visualizations. Journal of Chemical Education, 91(8), 1152-1161.

Kelly, R. M. (2016). Exploring the instructional use of contrasting molecular animations of a redox reaction. In Technology and Assessment Strategies for Improving Student Learning in Chemistry (pp. 117-136). American Chemical Society.

Kelly, R. M., & Akaygun, S. (2016). Insights into how students learn the difference between a weak acid and a strong acid from cartoon tutorials employing visualizations. Journal of Chemical Education, 93(6), 1010-1019.

Kelly, R. M., Akaygun, S., Hansen, S. J., & Villalta-Cerdas, A. (2017). The effect that comparing molecular animations of varying accuracy has on students’ submicroscopic explanations. Chemistry Education Research and Practice, 18(4), 582-600.

Kurniawati, Y., Wigati, M. R., & Hasri, S. (2021). Information and communications technology (ICT) based of chemistry instructional learning design for students with multiple intelligence. In Journal of Physics: Conference Series (Vol. 1779, No. 1, p. 012062). IOP Publishing.

Lathifa, U., Ajiati, D., & Udaibah, W. (2020). Investigasi model mental pada materi alkohol menggunakan tes diagnostik interview about event. Jurnal Inovasi Pendidikan Kimia, 14(1), 2479–2489.

Levy, S. T., & Wilensky, U. (2009). Crossing levels and representations: The connected chemistry (CC1) curriculum. Journal of Science Education and Technology, 18, 224–242.

MacVaugh, J., & Norton, M. (2012). Introducing sustainability into business education contexts using active learning. International Journal of Sustainability in Higher Education, 13(1), 72–87.

Mahdian, M., Patimah, S., & Kusasi, M. (2022). Efektivitas Model Discovery Learning Dalam Pembelajaran Daring Berbantuan Video Conference Terhadap Kemampuan Berpikir Kreatif Dan Self Regulation Peserta Didik Pada Materi Larutan Elektrolit Dan Non-Elektrolit. Quantum: Jurnal Inovasi Pendidikann Sains, 13(1), 20–35.

Mayer, R. (2020). Multimedia Learning (3rd Ed.). Cambridge: Cambridge University Press.

Mudjid, R. M., Supahar, S., Putranta, H., & Hetmina, D. S. (2022). Development of Android Physics Learning Tools Based on Local Wisdom Traditional Game Bola Boy as a Learning Source. International Journal of Interactive Mobile Technologies, 16(6), 92-112.

Nagel, M. L., & Lindsey, B. A. (2021). Implementation of reasoning chain construction tasks to support student explanations in general chemistry. Journal of Chemical Education, 99(2), 839-850.

Nuralita, A. (2020). Analisis penerapan model pembelajaran berbasis etnosains dalam pembelajaran tematik SD. Mimbar PGSD Undiksha, 8(1), 1–8.

Nuralita, A., Reffiane, F., & Mudzanatun, M. (2020). Keefektifan model PBL berbasis etnosains terhadap hasil belajar. Mimbar PGSD Undiksha, 8(3), 457–467.

Parmin, P., & Fibriana, F. (2019). Prospective teachers’ scientific literacy through ethnoscience learning integrated with the indigenous knowledge of people in the frontier, outermost, and least developed regions. Jurnal Penelitian dan Pembelajaran IPA, 5(2), 142–154.

Parmiti, D. P., Rediani, N. N., Antara, I. G. W. S., & Jayadiningrat, M. G. (2021). The effectiveness of local culture-integrated science learning through project-based assessment on scientific attitudes and science process skills of elementary school students. Jurnal Pendidikan IPA Indonesia, 10(3), 439–446.

Permatasari, D., & Laksono, E. W. (2019, June). Exploring guided discovery learning: The effect on students’ integrated ability and self-regulated in Chemistry. In Journal of Physics: Conference Series (Vol. 1233, No. 1, p. 012023). IOP Publishing.

Pujawan, I. G. N., Rediani, N. N., Antara, I. G. W. S., Putri, N. N. C. A., & Bayu, G. W. (2022). Revised Bloom Taxonomy-Oriented Learning Activities to Develop Scientific Literacy and Creative Thinking Skills. Jurnal Pendidikan IPA Indonesia, 11(1), 47-60.

Putri, S., Abdurahman, A., Andrian, D., Angraini, L., & Effendi, L. (2022). Development of interactive multimedia-based mathematics learning media macromedia flash 8. International Journal of Trends in Mathematics Education Research, 5(2), 206–213.

Putri, D. N., & Wiyarsi, A. (2022). Identification of mental models of high school students on acid-base theory. In AIP Conference Proceedings (Vol. 2468, No. 1, p. 040009). AIP Publishing LLC.

Rahmawati, Y., Baeti, H. R., Ridwan, A., Suhartono, S., & Rafiuddin, R. (2019). A culturally responsive teaching approach and ethnochemistry integration of Tegal culture for developing chemistry students’ critical thinking skills in acid-based learning. Journal of Physics: Conference Series, 1402(5), 055050.

Rahmawati, Y., Mardiah, A., Taylor, E., Taylor, P. C., & Ridwan, A. (2023). Chemistry Learning through Culturally Responsive Transformative Teaching (CRTT): Educating Indonesian High School Students for Cultural Sustainability. Sustainability, 15(8), 6925.

Redhana, I. W., Sudria, I. B., Suardana, I. N., Suja, I. W., & Putriani, V. D. (2020). Students’ mental models in acid-base topic. In Journal of Physics: Conference Series (Vol. 1521, No. 4, p. 042092). IOP Publishing.

Rizaldi, D. R., Andayani, Y., Doyan, A., Makhrus, M., Fatimah, Z., & Nurhayati, E. (2021). The use of Betel leaf in Nyirih tradition: Analyzing an ethnoscience-based learning material. International Journal on Education Insight, 2(1), 29-36.

Sartika, R. P., & Hadi, L. (2015). Pengembangan Perangkat Pembelajaran Model Siklus Belajar 5E Pada Materi Hukum Dasar Kimia Dalam Meningkatkan Hasil Belajar Mahasiswa. Jurnal Pendidikan Matematika dan IPA, 6(1), 74–81.

Sendur, G., Toprak, M., & Pekmez, E. S. (2010, November). Analyzing of students’ misconceptions about chemical equilibrium. In international conference on new trends in education and their implications (pp. 1-7).

Siregar, E. A., & Kurniawati, Y. (2022). The Analysis of Students’ Mental Models Using Macromedia Flash-Based Learning Media on Molecular Shapes Lesson. Jurnal Inovasi Pendidikan Kimia, 16(1), 47-52.

Stiawan, E., Basuki, R., Liliasari, L., & Rohman, I. (2022). Enhancement of Indonesian High School Student Conceptual Mastery on VSEPR Topic Using Virtual Simulation of Molecule Shapes: A Case Study of Quasi-Experimental Evidence. Jurnal Pendidikan IPA Indonesia, 11(4), 511-518.

Suciyati, A., Suryadarma, I. G. P., & Paidi, P. (2021). Integration of ethnoscience in problem-based learning to improve contextuality and meaning of biology learning. Biosfer: Jurnal Pendidikan Biologi, 14(2), 201-215.

Suja, I. W. (2015). Model mental mahasiswa calon guru kimia dalam memahami bahan kajian stereokimia. JPI (Jurnal Pendidikan Indonesia), 4(2).

Suja, I. W. (2017). Integrasi Kearifan Lokal Ke Dalam Kurikulum Ilmu Alamiah Dasar. Wahana Matematika Dan Sains: Jurnal Matematika, Sains, Dan Pembelajarannya, 11(1), 77-93.

Suja, I. W. (2018a). Model pembelajaran TripleChem untuk mengembangkan kompetensi mahasiswa calon guru kimia. [Doctoral dissertation, Unpublished]. Universitas Negeri Surabaya Indonesia.

Suja, I. W. (2018b). Profil model mental siswa SMA kelas XII tentang struktur dan sifat senyawa organik. Wahana Matematika dan Sains: Jurnal Matematika, Sains, dan Pembelajarannya, 12(2), 58–64.

Suja, I. W., Sudiana, I. K., Redhana, I. W., & Sudria, I. B. N. (2021, March). Mental model of prospective chemistry teachers on electrolyte and nonelectrolyte solutions. In IOP Conference Series: Materials Science and Engineering (Vol. 1115, No. 1, p. 012064). IOP Publishing.

Sumarni, W., & Kadarwati, S. (2020). Ethno-stem project-based learning: Its impact to critical and creative thinking skills. Jurnal Pendidikan IPA Indonesia, 9(1), 11–21.

Meristin, A., Meristin, A., & Rosita, I. (2023). The Chemical Learning Effectiveness Based on Pelangiran Ethnoscience in Improving Students’ Scientific Process Skills Through Electrolyte and Non-electrolyte Material Solution. In 3rd Universitas Lampung International Conference on Social Sciences (ULICoSS 2022) (pp. 118-128). Atlantis Press.

Supriadi, S., Wildan, W., Hakim, A., Savalas, L. T., & Haris, M. (2021). Model mental dan kemampuan spasial mahasiswa tahun pertama dan ketiga pendidikan kimia di Universitas Mataram. Jurnal Pijar Mipa, 16(3), 282–287.

Suradika, A., Dewi, H.I., & Nasution, M.I. (2023). Project-based learning and problem-based learning models in critical and creative students. Jurnal Pendidikan IPA Indonesia, 12(1), 153-167.

Tasker, R., & Dalton, R. (2006). Research into practice: visualisation of the molecular world using animations. Chemistry Education Research and Practice, 7(2), 141-159.

Tsaparlis, G., & Finlayson, O. E. (2014). Physical chemistry education: its multiple facets and aspects. Chemistry Education Research and Practice, 15(3), 257-265.

Widayanti, E. (2020). Potensi pembelajaran saintifik bernuansa etnosains untuk memberdayakan kemampuan berpikir kritis siswa. Wahana Didaktika: Jurnal Ilmu Kependidikan, 18(1), 82–94.

Wildan, W., Hakim, A., Supriadi, S., Hadisaputra, S., & Savalas, L. R. T. (2023, April). Correlation of the mental models, spatial abilities, and student learning outcomes in environmental chemistry courses. In AIP Conference Proceedings (Vol. 2619, No. 1). AIP Publishing.

Yerimadesi, Y., Warlinda, Y. A., Rosanna, D. L., Sakinah, M., Putri, E. J., Guspatni, G., & Andromeda, A. (2023). Guided Discovery Learning-Based Chemistry e-Module and ITS Effect on Students’ Higher-Order Thinking Skills. Jurnal Pendidikan IPA Indonesia, 12(1), 168-177.

Yulianti, Y., Pursitasari, I. D., & Permana, I. (2022). Spatial ability and digital literacy profiles: Preceding survey on the need of augmented reality media in chemistry instruction. Indonesian Journal of Educational Research and Review, 5(2).

Yulianto, F., Winarno, W., & Indriayu, M. (2023). Audiovisual Learning Media Based on Local Wisdom Values of the Baduy Tribe Community to Grow Student Character. International Journal of Elementary Education, 7(1), 43-53.

Refbacks

  • There are currently no refbacks.