Comparison of SWAT-based Ecohydrological Modeling in the Rawa Pening Catchment Area, Indonesia
Abstract
The Soil and Water Assessment Tool (SWAT) is an ecohydrological model widely applied to assess water quality and watershed management. This tool also has the advantage of building watershed models even with limited monitoring data availability. The essential data required by this tool includes digital elevation models (DEM), land use maps, climate data, and soil data. Nonetheless, the availability of spatial data is still often a challenge in developing hydrological models, especially in developing countries such as Indonesia. This research will compare the accuracy of freely available data in Indonesia in facilitating the development of hydrological models from SWAT in the Rawa Pening catchment area. This research is crucial since Rawa Pening Lake is a priority lake for revitalization, so the research results will help provide suggestions regarding presenting data in SWAT modeling. This research compares SWAT models built from different land use and DEM (Digital Elevation Models) data. The land use data being compared is the result of processing from the Google Earth Engine (GEE) platform using machine learning with land use data from government agencies, namely the Ministry of Environment and Forestry, while the DEM data being compared is SRTM and DEMNAS data. The validation results using R, R2, RMSE, and NSE show that, in general, the model built from land use from GEE is the best compared to the other models. In modeling SWAT in Indonesia, we recommend using good-quality land-use data. Utilizing supervised classification through Random Forest (RF) algorithms within GEE can facilitate the acquisition of this data. To reduce computation time, the DEM can be SRTM with a small sacrifice of accuracy.
Keywords
Full Text:
PDFReferences
Alitane, A., Essahlaoui, A., El Hafyani, M., El Hmaidi, A., El Ouali, A., Kassou, A., El Yousfi, Y., van Griensven, A., Chawanda, C. J., & Van Rompaey, A. (2022). Water Erosion Monitoring and Prediction in Response to the Effects of Climate Change Using RUSLE and SWAT Equations: Case of R’Dom Watershed in Morocco. Land, 11(1), 93.
Aloui, S., Mazzoni, A., Elomri, A., Aouissi, J., Boufekane, A., & Zghibi, A. (2023). A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. Journal of Environmental Management, 326, 116799.
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., & Parsian, S. (2020). Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350.
Anand, J., Gosain, A. K., & Khosa, R. (2018). Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Science of the Total Environment, 644, 503–519.
Aqnouy, M., Ahmed, M., Ayele, G. T., Bouizrou, I., Bouadila, A., & Stitou El Messari, J. E. (2023). Comparison of hydrological platforms in assessing rainfall-runoff behavior in a Mediterranean watershed of Northern Morocco. Water, 15(3), 447.
Arjasakusuma, S., Swahyu Kusuma, S., Rafif, R., Saringatin, S., & Wicaksono, P. (2020). Combination of Landsat 8 OLI and Sentinel-1 SAR Time-Series Data for Mapping Paddy Fields in Parts of West and Central Java Provinces, Indonesia. ISPRS International Journal of Geo-Information, 9(11), 663.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34(1), 73–89.
Buakhao, W., & Kangrang, A. (2016). DEM resolution impact on the estimation of the physical characteristics of watersheds by using SWAT. Advances in Civil Engineering, 2016.
Cai, Y., Zhang, F., Shi, J., Johnson, V. C., Ahmed, Z., Wang, J., & Wang, W. (2023). Enhancing SWAT model with modified method to improve Eco-hydrological simulation in arid region. Journal of Cleaner Production, 403, 136891.
Chathuranika, I. M., Gunathilake, M. B., Baddewela, P. K., Sachinthanie, E., Babel, M. S., Shrestha, S., Jha, M. K., & Rathnayake, U. S. (2022). Comparison of two hydrological models, HEC-HMS and SWAT in run-off estimation: application to Huai Bang Sai Tropical Watershed, Thailand. Fluids, 7(8), 267.
Chen, J., Shao, C., Jiang, S., Qu, L., Zhao, F., & Dong, G. (2019). Effects of changes in precipitation on energy and water balance in a Eurasian meadow steppe. Ecological Processes, 8(1), 1–15.
Danurrachman, Y., Maryono, M., Muhammad, F., Soeprobowati, T. R., & Maas, P. (2023). Physico-Chemical and Biological Water Quality of Tuntang Estuary, Demak, Central Java as A Base for Sustainable River Management. Jurnal Pendidikan IPA Indonesia, 12(4).
Dash, S. S., Sahoo, B., & Raghuwanshi, N. S. (2020). A novel embedded pothole module for Soil and Water Assessment Tool (SWAT) improving streamflow estimation in paddy-dominated catchments. Journal of Hydrology, 588, 125103.
Dekongmen, B. W., Anornu, G. K., Kabo-Bah, A. T., Larbi, I., Sunkari, E. D., Dile, Y. T., Agyare, A., & Gyamfi, C. (2022). Groundwater recharge estimation and potential recharge mapping in the Afram Plains of Ghana using SWAT and remote sensing techniques. Groundwater for Sustainable Development, 17, 100741.
Dimyati, M., Husna, A., Handayani, P. T., & Annisa, D. N. (2022). Cloud removal on satellite imagery using blended model: case study using quick look of high-resolution image of Indonesia. TELKOMNIKA (Telecommunication Computing Electronics and Control), 20(2), 373–382.
Djufry, F. (2012). Pemodelan Neraca Air Tanah Untuk Pendugaan Surplus dan Defisit Air Untuk Pertumbuhan Tanaman Pangan Di Kabupaten Merauke , Papua. Informatika Pertanian, 21(1), 1–9.
Dos Santos, V., Oliveira, R. A. J., Datok, P., Sauvage, S., Paris, A., Gosset, M., & Sánchez-Pérez, J. M. (2022). Evaluating the performance of multiple satellite-based precipitation products in the Congo River Basin using the SWAT model. Journal of Hydrology: Regional Studies, 42, 101168.
Eingrüber, N., & Korres, W. (2022). Climate change simulation and trend analysis of extreme precipitation and floods in the mesoscale Rur catchment in western Germany until 2099 using Statistical Downscaling Model (SDSM) and the Soil & Water Assessment Tool (SWAT model). Science of The Total Environment, 838, 155775.
Escamilla-Rivera, V., Cortina-Villar, S., Vaca, R. A., Golicher, D., Arellano-Monterrosas, J., & Honey-Rosés, J. (2022). Effects of Finer Scale Soil Survey and Land-Use Classification on SWAT Hydrological Modelling Accuracy in Data-Poor Study Areas. Journal of Water Resource and Protection, 14(2), 100–125.
Fan, J., Galoie, M., Motamedi, A., & Huang, J. (2021). Assessment of land cover resolution impact on flood modeling uncertainty. Hydrology Research, 52(1), 78–90.
Fariz, T. R., & Faniza, V. (2023). Comparison of built-up land indices for building density mapping in urban environments. AIP Conference Proceedings, 2683(1).
Fariz, T. R., & Nurhidayati, E. (2020). Mapping Land Coverage in the Kapuas Watershed Using Machine Learning in Google Earth Engine. Journal of Applied Geospatial Information, 4(2), 390–395.
Fariz, T. R., Suhardono, S., Sultan, H., Rahmawati, D., & Arifah, E. Z. (2022). Land Cover Mapping in Lake Rawa Pening Using Landsat 9 Imagery and Google Earth Engine. Journal of Environmental and Science Education, 2(1), 1–6.
Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.
Gao, F., Feng, G., Han, M., Dash, P., Jenkins, J., & Liu, C. (2019). Assessment of surface water resources in the Big Sunflower River watershed using coupled SWAT–MODFLOW model. Water, 11(3), 528.
Gxokwe, S., Dube, T., & Mazvimavi, D. (2022). Leveraging Google Earth Engine platform to characterize and map small seasonal wetlands in the semi-arid environments of South Africa. Science of The Total Environment, 803, 150139.
Ha, L. T., Bastiaanssen, W. G. M., Van Griensven, A., Van Dijk, A. I. J. M., & Senay, G. B. (2018). Calibration of spatially distributed hydrological processes and model parameters in SWAT using remote sensing data and an auto-calibration procedure: A case study in a Vietnamese river basin. Water, 10(2), 212.
Höfle, B., Griesbaum, L., & Forbriger, M. (2013). GIS-Based detection of gullies in terrestrial LiDAR data of the Cerro Llamoca Peatland (Peru). Remote Sensing, 5(11), 5851–5870.
Hung, P., Le, T. Van, Vo, P. Le, Duong, H. C., & Rahman, M. M. (2022). Vulnerability assessment of water resources using GIS, remote sensing and SWAT model–a case study: the upper part of Dong Nai river basin, Vietnam. International Journal of River Basin Management, 20(4), 517–532.
Ihsan, H. M., Arrasyid, R., Darsiharjo, D., & Ruhimat, M. (2023). The use of Geographic Information System (GIS) and Remote Sensing (RS) for potential unconfined groundwater in structural and volcano landforms. Geodesy and Cartography, 49(2), 125–132.
Jamaluddin, I., Chen, Y.-N., Ridha, S. M., Mahyatar, P., & Ayudyanti, A. G. (2022). Two Decades Mangroves Loss Monitoring Using Random Forest and Landsat Data in East Luwu, Indonesia (2000–2020). Geomatics, 2(3), 282–296.
Karabulut, M. S., & Özdemir, H. (2019). Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey. Environmental Earth Sciences, 78(18), 1–14.
Kiros, G., Shetty, A., & Nandagiri, L. (2015). Performance evaluation of SWAT model for land use and land cover changes in semi-arid climatic conditions: a review. Hydrology: Current Research, 6(3), 7.
Knoben, W. J. M., Freer, J. E., & Woods, R. A. (2019). Technical note: inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol Earth Syst Sc 23: 4323–4331.
Kolli, M. K., Opp, C., Karthe, D., & Groll, M. (2020). Mapping of major land-use changes in the Kolleru Lake freshwater ecosystem by using Landsat satellite images in Google Earth engine. Water, 12(9), 2493.
Krpec, P., Horáček, M., & Šarapatka, B. (2020). A comparison of the use of local legacy soil data and global datasets for hydrological modelling small-scale watersheds: Implications for nitrate loading estimation. Geoderma, 377, 114575.
Kumar, L., & Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1509.
Kuti, I. A., & Ewemoje, T. A. (2021). Modelling of sediment yield using the soil and water assessment tool (SWAT) model: a case study of the Chanchaga Watersheds, Nigeria. Scientific African, 13, e00936.
Lei, K., Wu, Y., Li, F., Yang, J., Xiang, M., Li, Y., & Li, Y. (2021). Relating land use/cover and landscape pattern to the water quality under the simulation of SWAT in a reservoir basin, Southeast China. Sustainability, 13(19), 11067.
Letsoin, S. M. A., Herak, D., Rahmawan, F., & Purwestri, R. C. (2020). Land cover changes from 1990 to 2019 in Papua, Indonesia: Results of the remote sensing imagery. Sustainability, 12(16), 6623.
Liang, K., Qi, J., Zhang, X., & Deng, J. (2022). Replicating measured site-scale soil organic carbon dynamics in the US Corn Belt using the SWAT-C model. Environmental Modelling & Software, 158, 105553.
Loukika, K. N., Keesara, V. R., & Sridhar, V. (2021). Analysis of land use and land cover using machine learning algorithms on Google Earth Engine for Munneru River Basin, India. Sustainability, 13(24), 13758.
Magidi, J., Nhamo, L., Mpandeli, S., & Mabhaudhi, T. (2021). Application of the random forest classifier to map irrigated areas using Google Earth Engine. Remote Sensing, 13(5), 876.
Mapes, K. L., & Pricope, N. G. (2020). Evaluating SWAT model performance for run-off, percolation, and sediment loss estimation in low-gradient watersheds of the Atlantic coastal plain. Hydrology, 7(2), 21.
Mardiatno, D., Faridah, F., Listyaningrum, N., Hastari, N. R. F., Rhosadi, I., Sherly da Costa, A. D., Rahmadana, A. D. W., Lisan, A. R. K., Sunarno, S., & Setiawan, M. A. (2023). A Holistic Review of Lake Rawapening Management Practices, Indonesia: Pillar-Based and Object-Based Management. Water, 15(1), 39.
Mardiatno, D., Najib, D. W. A., Widyaningsih, Y., & Setiawan, M. A. (2021). TATAKELOLA LANSKAP RAWAPENING BERDASARKAN TINGKAT RESIKO BENCANA LINGKUNGAN DI SUB DAS RAWAPENING (Landscape governance of Rawapening based on the level of environmental disaster risk in the Rawapening Sub Watershed). Jurnal Penelitian Pengelolaan Daerah Aliran Sungai (Journal of Watershed Management Research), 5(1), 21–40.
Marin, M., Clinciu, I., Tudose, N. C., Ungurean, C., Adorjani, A., Mihalache, A. L., Davidescu, A. A., Davidescu, Șerban O., Dinca, L., & Cacovean, H. (2020). Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: a review. Environmental Research, 184, 109330.
Midekisa, A., Holl, F., Savory, D. J., Andrade-Pacheco, R., Gething, P. W., Bennett, A., & Sturrock, H. J. W. (2017). Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PloS One, 12(9), e0184926.
Mutaqin, B. W., Marfai, M. A., Hadmoko, D. S., Wijayanti, H., Lavigne, F., & Faral, A. (2021). Comparison of DEMs Spatial Resolution for Geomorphological Study in a Small Volcanic Island of Tidore, North Maluku, Indonesia. Journal of Hunan University Natural Sciences, 48(6).
Muthee, S. W., Kuria, B. T., Mundia, C. N., Sichangi, A. W., Kuria, D. N., Goebel, M., & Rienow, A. (2022). Using SWAT to model the response of evapotranspiration and run-off to varying land uses and climatic conditions in the Muringato basin, Kenya. Modeling Earth Systems and Environment, 1–13.
Nazari-Sharabian, M., Taheriyoun, M., & Karakouzian, M. (2020). Sensitivity analysis of the DEM resolution and effective parameters of run-off yield in the SWAT model: a case study. Journal of Water Supply: Research and Technology-Aqua, 69(1), 39–54.
Nemmaoui, A., Aguilar, F. J., Aguilar, M. A., & Qin, R. (2019). DSM and DTM generation from VHR satellite stereo imagery over plastic-covered greenhouse areas. Computers and Electronics in Agriculture, 164, 104903.
Olaoye, I. A., Confesor Jr, R. B., & Ortiz, J. D. (2021). Impact of seasonal variation in climate on water quality of Old Woman Creek watershed Ohio using SWAT. Climate, 9(3), 50.
Oo, T. K., Arunrat, N., Sereenonchai, S., Ussawarujikulchai, A., Chareonwong, U., & Nutmagul, W. (2022). Comparing Four Machine Learning Algorithms for Land Cover Classification in Gold Mining: A Case Study of Kyaukpahto Gold Mine, Northern Myanmar. Sustainability, 14(17), 10754.
Orieschnig, C. A., Belaud, G., Venot, J.-P., Massuel, S., & Ogilvie, A. (2021). Input imagery, classifiers, and cloud computing: Insights from multi-temporal LULC mapping in the Cambodian Mekong Delta. European Journal of Remote Sensing, 54(1), 398–416.
Pambudi, A. S. (2019). Watershed management in Indonesia: A regulation, institution, and policy review. Jurnal Perencanaan Pembangunan: The Indonesian Journal of Development Planning, 3(2), 185–202.
Pan, X., Wang, Z., Gao, Y., Dang, X., & Han, Y. (2022). Detailed and automated classification of land use/land cover using machine learning algorithms in Google Earth Engine. Geocarto International, 37(18), 5415–5432.
Panda, C., Das, D. M., Raul, S. K., & Sahoo, B. C. (2021). Sediment yield prediction and prioritization of sub-watersheds in the Upper Subarnarekha basin (India) using SWAT. Arabian Journal of Geosciences, 14(9), 1–19.
Pande, C. B. (2022). Land Use/Land Cover and Change Detection mapping in Rahuri watershed area (MS), India using the Google Earth Engine and Machine Learning Approach. Geocarto International, just-accepted, 1–15.
Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective using IoT. Heliyon, 6(7).
Pelletier, C., Valero, S., Inglada, J., Champion, N., & Dedieu, G. (2016). Assessing the robustness of Random Forests to map land cover with high-resolution satellite image time series over large areas. Remote Sensing of Environment, 187, 156–168.
Piranti, A., Waluyo, G., & Rahayu, D. R. U. S. (2019). The possibility of using Lake Rawa Pening as a source of drinking water. Journal of Water and Land Development, 41.
Poblete, D., Arevalo, J., Nicolis, O., & Figueroa, F. (2020). Optimization of hydrologic response units (Hrus) using gridded meteorological data and spatially varying parameters. Water, 12(12), 3558.
Rouse Jr, J. W., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation.
Roy, P. S., Miyatake, S., & Rikimaru, A. (1997). Biophysical spectral response modeling approach for forest density stratification. Proc. The 18th Asian Conference on Remote Sensing.
Saade, J., Atieh, M., Ghanimeh, S., & Golmohammadi, G. (2021). Modeling Impact of Climate Change on Surface Water Availability Using SWAT Model in a Semi-Arid Basin: Case of El Kalb River, Lebanon. Hydrology, 8(3), 134.
Sammartano, V., Liuzzo, L., & Freni, G. (2019). Identification of potential locations for run-of-river hydropower plants using a GIS-based procedure. Energies, 12(18), 3446.
Sanjoto, T. B., Sidiq, W. A. B. N., & Nugraha, S. B. (2020). Land cover change analysis to sedimentation rate of Rawapening Lake. GEOMATE Journal, 18(70), 294–301.
Shaharum, N. S. N., Shafri, H. Z. M., Ghani, W. A. W. A. K., Samsatli, S., Al-Habshi, M. M. A., & Yusuf, B. (2020). Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sensing Applications: Society and Environment, 17, 100287.
Shawky, M., Moussa, A., Hassan, Q. K., & El-Sheimy, N. (2019). Pixel-based geometric assessment of channel networks/orders derived from global spaceborne digital elevation models. Remote Sensing, 11(3), 235.
Shekar, P. R., Mathew, A., Pandey, A., & Bhosale, A. (2023). A comparison of the performance of SWAT and artificial intelligence models for monthly rainfall–run-off analysis in the Peddavagu River Basin, India. AQUA—Water Infrastructure, Ecosystems and Society, 72(9), 1707–1730.
Shih, H., Stow, D. A., & Tsai, Y. H. (2019). Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping. International Journal of Remote Sensing, 40(4), 1248–1274.
Sidhu, N., Pebesma, E., & Câmara, G. (2018). Using Google Earth Engine to detect land cover change: Singapore as a use case. European Journal of Remote Sensing, 51(1), 486–500.
Sowah, R. A., Bradshaw, K., Snyder, B., Spidle, D., & Molina, M. (2020). Evaluation of the soil and water assessment tool (SWAT) for simulating E. coli concentrations at the watershed-scale. Science of the Total Environment, 746, 140669.
Sukumaran, H., & Sahoo, S. N. (2020). A Methodological framework for identification of baseline scenario and assessing the impact of DEM scenarios on SWAT model outputs. Water Resources Management, 34(15), 4795–4814.
Sundar, P. K. S., & Deka, P. C. (2022). Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: a machine learning approach. Environmental Science and Pollution Research, 29(57), 86220–86236.
Tan, M. L., Gassman, P. W., Srinivasan, R., Arnold, J. G., & Yang, X. (2019). A review of SWAT studies in Southeast Asia: applications, challenges and future directions. Water, 11(5), 914.
Tan, M. L., Gassman, P. W., Yang, X., & Haywood, J. (2020). A review of SWAT applications, performance, and future needs for simulation of hydro-climatic extremes. Advances in Water Resources, 143, 103662.
Tran, T.-N.-D., Nguyen, Q. B., Vo, N. D., Marshall, R., & Gourbesville, P. (2022). Assessment of Terrain Scenario Impacts on Hydrological Simulation with SWAT Model. Application to Lai Giang Catchment, Vietnam. In Advances in Hydroinformatics (pp. 1205–1222). Springer.
Trisakti, B., Suwargana, N., & Santo Cahyono, J. (2017). Monitoring of lake ecosystem parameters using Landsat data (a case study: Lake Rawa Pening). International Journal of Remote Sensing and Earth Sciences (IJReSES), 12(1), 71–81.
Tyagi, S., Singh, N., Sonkar, G., & Mall, R. K. (2019). Sensitivity of evapotranspiration to climate change using DSSAT model in sub humid climate region of Eastern Uttar Pradesh. Modeling Earth Systems and Environment, 5(1), 1–11.
UNEP. (n.d.). Freshwater Strategy 2017-2021. https://wedocs.unep.org/20.500.11822/20479
Wang, C., Jia, M., Chen, N., & Wang, W. (2018). Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: A case study in the middle Yangtze River Basin. Remote Sensing, 10(10), 1635.
Wiwoho, B. S., Astuti, I. S., Alfarizi, I. A. G., & Sucahyo, H. R. (2021). Validation of three daily satellite rainfall products in a humid tropic watershed, Brantas, Indonesia: implications to land characteristics and hydrological modelling. Hydrology, 8(4), 154.
Wulandari, S., Sabar, A., Setiadi, T., & Kurniawan, B. (2021). Markov analysis of water discharge as an indicator of surface water security of the Bandung basin. Jurnal Pendidikan IPA Indonesia, 10(4), 596–606.
Yu, Z., Di, L., Yang, R., Tang, J., Lin, L., Zhang, C., Rahman, M. S., Zhao, H., Gaigalas, J., & Yu, E. G. (2019). Selection of Landsat 8 OLI band combinations for land use and land cover classification. 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 1–5.
Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.
Zhang, X., Xu, M., Wang, S., Huang, Y., & Xie, Z. (2022). Mapping photovoltaic power plants in China using Landsat, random forest, and Google Earth Engine. Earth System Science Data, 14(8), 3743–3755.
Zylshal, Z., Bayanuddin, A. A., Nugroho, F. S., & Munawar, S. T. A. (2021). Correcting The Topographic Effect On Spot-6/7 Multispectral Imageries: A Comparison Of Different Digital Elevation Models. Geographia Technica, 16.
Refbacks
- There are currently no refbacks.