Symmetry Energy in the Inner Crust Region of Neutron Stars: A Study Around the Neutron Drip Density Point using the Compressed Liquid Drop Model

Eko Tri Sulistyani(1), Yusuf Panji Wisnuaji(2), Romy Hanang Setya Budhi(3),


(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada

Abstract

The properties of neutron star’s inner crust have been investigated using the Compressible Liquid Drop Model, particularly around the neutron drip density region, which is the boundary between the outer and inner crust. Symmetry energy in the equations of state SLy4 and BSk3 was calculated to determine the density data between the outer and inner crusts.  The properties of the inner crust can be understood through parameters such as the change in the number of nucleons in the atomic nucleus, the asymmetry parameter in surface energy, and volume energy. It was shown that the choice of the symmetry energy expansion coefficient (L) of order-1 results in a distinct energy range of 9-11 MeV within the neutron drip region. This contrasts significantly with the energy symmetry observed around saturation density, which reaches (30 ± 4) MeV in the reference models used. Furthermore, it was found that symmetry energy affects the neutron composition in the inner crust. As the density increases, neutron numbers rise, while proton counts exhibit relative stability within the range of 40 to 50 for each atomic nucleus. Importantly, we observe a marked decrease in proton fraction at the onset of the neutron drip region, where ???? ≅10 MeV, suggesting electron capture processes transforming protons into neutrons. This phenomenon contributes to the presence of neutron and free neutron gas layers within the inner crust.

Keywords

symmetry energy, neutron drip, inner crust, compressible liquid drop model

Full Text:

PDF

References

Baldo, M., & Burgio, G. F. (2016). The Nuclear Symmetry Energy. Progress in Particle and Nuclear Physics, 91, 203–258. https://doi.org/10.1016/j.ppnp.2016.06.006

Baym, G., Bethe, H. A., & Pethick, C. J. (1971). Neutron Star Matter. Nuclear Physics, Section A, 175(2), 225–271. https://doi.org/10.1016/0375-9474(71)90281-8

Baym, G., Pethick, C. J., & Sutherland, P. (1971). The Groud State of Matter at High Densities : Equation of State and Stellar Models. The Astrophysical Journal, 170, 299–317.

Chamel, N., & Haensel, P. (2008). Physics of Neutron Star Crusts. Living Reviews in Relativity, 11, 1–201. https://doi.org/10.12942/lrr-2008-10

Danielewicz, P., & Lee, J. (2009). Symmetry Energy I: Semi-Infinite Matter. Nuclear Physics A, 818(1–2), 36–96. https://doi.org/10.1016/j.nuclphysa.2008.11.007

Douchin, F., & Haensel, P. (2001). A Unified Equation of State of Dense Matter and Neutron Star Structure. Astronomy and Astrophysics, 380(A&A), 151–167. https://doi.org/https://doi.org/10.1051/0004-6361:20011402

Fantina, A. F., Chamel, N., Mutafchieva, Y. D., Stoyanov, Z. K., Mihailov, L. M., & Pavlov, R. L. (2016). Role of The Symmetry Energy on The Neutron-Drip Transition in Accreting and Nonaccreting Neutron Stars. Physical Review C, 93(1), 1–12. https://doi.org/10.1103/PhysRevC.93.015801

Gandolfi, S. (2013). The Equation of State of Neutron Star Matter and The Symmetry Energy. Journal of Physics: Conference Series, 420(1), 1–7. https://doi.org/10.1088/1742-6596/420/1/012150

Grill, F., Providência, C., & Avancini, S. S. (2012). Neutron Star Inner Crust and Symmetry Energy. Physical Review C - Nuclear Physics, 85(5), 2–16. https://doi.org/10.1103/PhysRevC.85.055808

Haensel, Paweł. (2001). Neutron Star Crusts. In Physics of Neutron Star Interiors (Vol. 578, pp. 127–174). https://doi.org/10.1007/3-540-44578-1_5

Haensel, P., Potekhin, A.Y., and Yakovlev, D.G. (2007). Neutron Stars 1: Equation of State and Structure, Astrophysics and Space Science Library, vol. 326, Springer, New York, U.S.A.

Iida, K., & Oyamatsu, K. (2004). Surface Tension in A Compressible Liquid-Drop Model: Effects on Nuclear Density and Neutron Skin Thickness. Physical Review C - Nuclear Physics, 69(3), 1–4. https://doi.org/10.1103/PhysRevC.69.037301

Istiqomah, E. L. (2010). Suhu Kritis dan Celah Tenaga Superfluida pada Inti Bintang Neutron yang Mendingin (Universitas Gadjah Mada). Retrieved from http://etd.repository.ugm.ac.id/home/detail_pencarian/48767

Lattimer, J. M., & Prakash, M. (2004). The Physics of Neutron Stars. Science, 304(5670), 536–542. https://doi.org/10.1126/science.1090720

Lattimer, James M., & Prakash, M. (2007). Neutron Star Observations: Prognosis for Equation of State Constraints. Physics Reports, 442(1–6), 109–165. https://doi.org/10.1016/j.physrep.2007.02.003

Lee, C. H., Kuo, T. S., Li, G. Q., & Brown, G. E. (1998). Nuclear Symmetry Energy. Physical Review C, 57(6), 3488–3491. https://doi.org/10.1103/PhysRev.109.117

Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. San Francisco: Freeman & Company.

Moustakidis, C. C. (2012). Symmetry Energy Effects on Location of The Inner Edge of Neutron Star Crusts. Phys. Rev. C, 1–12.

Newton, W. G., Gearheart, M., Hooker, J., & Li, B. A. (2012). The Nuclear Symmetry Energy, The Inner Crust and Global Neutron Star Modeling. Astrophysical Journal, 1(1), 1–25.

Oppenheimer, J. R., & Volkoff, G. M. (1939). On Massive Neutron Cores. Physical Review, 55(4), 374–381. https://doi.org/10.1103/PhysRev.55.374

Oyamatsu, K., Iida, K., & Koura, H. (2010). Neutron Drip Line and The Equation of State of Nuclear Matter. Physical Review C - Nuclear Physics, 82(2), 2–5. https://doi.org/10.1103/PhysRevC.82.027301

Pearson, J. M., Chamel, N., Fantina, A. F., & Goriely, S. (2014). Symmetry Energy: Nuclear Masses and Neutron Stars. European Physical Journal A, 50(2), 1–10. https://doi.org/10.1140/epja/i2014-14043-8

Potekhin, A. Y. (2010). The Physics of Neutron Stars. Physics-Uspekhi, 53(12), 1235–1256. https://doi.org/10.3367/ufne.0180.201012c.1279

Roca-Maza, X., & Piekarewicz, J. (2008). Impact of The Symmetry Energy on The Outer Crust of Nonaccreting Neutron Stars. Physical Review C - Nuclear Physics, 78(2), 1–11. https://doi.org/10.1103/PhysRevC.78.025807

Sammarruca, F. (2014). Recent Advances in Microscopic Approaches to Nuclear Matter and Symmetry Energy. Symmetry, 6(4), 851–879. https://doi.org/10.3390/sym6040851

Steiner, A. W., Prakash, M., Lattimer, J. M., & Ellis, P. J. (2005). Isospin asymmetry in nuclei and neutron stars. Physics Reports, 411(6), 325–375. https://doi.org/10.1016/j.physrep.2005.02.004

Steiner, Andrew W. (2008). Neutron Star Inner Crust: Nuclear Physics Input. Physical Review C - Nuclear Physics, 77(3), 2–8. https://doi.org/10.1103/PhysRevC.77.035805

Tolman, R. C. (1939). Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Physical Review, 55(4), 364–373. https://doi.org/10.1103/PhysRev.55.364

Vidaña, I. (2020). Short Introduction to The Physics of Neutron Stars. EPJ Web of Conferences, 227, 1–8. https://doi.org/10.1051/epjconf/202022701018

Viñas, X., Gonzalez-Boquera, C., Sharma, B. K., & Centelles, M. (2017). Pasta-Phase Transitions in The Inner Crust of Neutron Stars. Acta Physica Polonica B, Proceedings Supplement, 10(1), 259–268. https://doi.org/10.5506/APhysPolBSupp.10.259

Weber, F. (2005). Strange Quark Matter and Compact Stars. Progress in Particle and Nuclear Physics, 54(1), 193–288. https://doi.org/10.1016/j.ppnp.2004.07.001

Zhang, Z., & Chen, L. W. (2013). Constraining The Symmetry Energy at Subsaturation Densities using Isotope Binding Energy Difference and Neutron Skin Thickness. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 726(1–3), 234–238. https://doi.org/10.1016/j.physletb.2013.08.002

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License


View My Stats