Optimizing Atmospheric Ion Harvesting Electrodes with Graphene for Clean Energy Generation Based on Capacitive Properties and Energy Storage

Ghitha Nadhira Azka Rahiemy(1), Zulfikar Irham(2), Yuma Estu Gumilang(3), Avisena Kemal El-Syifa(4), Duta Norma Yunita(5), Eko Tri Sulistyani(6),


(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
(4) Universitas Gadjah Mada
(5) Universitas Gadjah Mada
(6) Universitas Gadjah Mada

Abstract

The atmosphere is rich in positive ions, rendering it electrically more positive than the Earth's surface. This characteristic presents the atmosphere as a potential source of renewable energy through ion harvesting. This study harnesses the electrical properties by optimizing ion harvesting electrodes using pristine graphene and graphene-Au thin films to generate clean electricity. Research methods included Raman Spectroscopy and Cyclic Voltammetry (CV) to assess the surface characteristics and capacitance of the graphene samples, along with laboratory-scale ion harvesting simulations to evaluate the energy data produced in the ion harvesting process. The samples used in this study were identified as bilayer graphene, as confirmed by Raman Spectroscopy. CV testing yielded capacitance values of 0.40288 F for pristine graphene and 0.44879 F for graphene-Au samples. According to ion harvesting simulations, graphene-Au generated approximately 6.8 times more energy than pristine graphene and five times more energy than copper alone. The respective energy outputs for graphene-Au, pristine graphene, and pure copper were 1.376 mW, 1.157 mW, and 0.374 mW. These results demonstrate that adding a graphene layer to the atmospheric ion-harvesting electrode can optimize the electricity generation process.

Keywords

atmosphere; capacitance; energy; graphene; ion

Full Text:

PDF

References

Biello, D., 2009. How to use solar energy at night. Scientific American, 18.

David, P., Ganesh, S., Feng, Z., Zhenbo, P., Michelle, W., & Haitao, L. (2016). Synthesizing and Characterizing Graphene via Raman Spectroscopy: An Upper-Level Undergraduate Experiment That Exposes Students to Raman Spectroscopy and a 2D Nanomaterial. Journal of Chemical Education, DOI: 10.1021/acs.jchemed.6b00198.

Directorate General of Electricity, Ministry of Energy and Mineral Resources. (2023). Draft Rencana Umum Ketenagalistrikan Nasional (RUKN) 2023–2060. Kementerian Energi dan Sumber Daya Mineral, Jakarta.

Dwi, F., Handayani, I., & Rosiana, M. (2021). Karakterisasi Raman Spektroskopi pada Heterostruktur MoS2/WS2. E-Proceeding of Engineering, 8(1), 351-357.

EBTKE Public Relations. (2023). Percepat Pencapaian Target NDC, Pemerintah Optimalkan Sumber EBT untuk Interkoneksi Jaringan Listrik. URL: https://ebtke.esdm.go.id/post/2023/06/02/3487/percepat.pencapaian.target.ndc.pemerintah.optimalkan.sumber.ebt.untuk.interkoneksi.jaringan.listrik. Accessed September 2, 2023.

Feynman, R.P., Leighton, R.B., & Sands, M. (2014). The Feynman Lectures on Physics, Volume II: The New Millennium Edition: Mainly Electromagnetism and Matter. Basic Books, California.

Hussain, F., Pal, A., Islam, J., Howlader, D., & Hossain S. (2021). Producing Electricity Using Ion Harvesting Technology. 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), January 5-7, 2021, Dhaka, Bangladesh, pp. 44-47.

Igini, M. (2023). The Advantages and Disadvantages of Nuclear Energy. URL: https://earth.org/the-advantages-and-disadvantages-of-nuclear-energy/. Accessed January 28, 2023.

Liu, L.W.Y., Zhang, Q., & Chen, Y. (2017). Harvesting atmospheric ions using surface electromagnetic wave technologies. Advances in Technology Innovation, 2(4), 99.

Mutiara, A. (2023). Termasuk Indonesia, Ini Negara Penyumbang Polusi Terbesar. URL: https://www.cnbcindonesia.com/research/20230525072754-128-440369/termasuk-indonesia-ini-negara-penyumbang-polusi-terbesar. Accessed September 2, 2023.

Ramana, M.V., 2018. Technical and social problems of nuclear waste. Wiley Interdisciplinary Reviews: Energy and Environment, 7(4), p.e289.

Ramli, N.I., Ismail, N.A.B., Abd-Wahab, F., & Salim, W.W.A.W. (2018). Cyclic Voltammetry and Electrical Impedance Spectroscopy of Electrodes Modified with PEDOT: PSS-Reduced Graphene Oxide Composite in Transparent Conducting Films. IntechOpen.

Saeed, M., Alshammari, Y., Majeed, S.A. and Al-Nasrallah, E., 2020. Chemical vapour deposition of graphene—Synthesis, characterisation, and applications: A review. Molecules, 25(17), p.3856.

Sheikh, K., 2016. New concentrating solar tower is worth its salt with 24/7 power. Scientific American, 14.

Sunu, W., Irawan, R., & Desi, L. (2019). Nanomaterial Graphene Oxide: Sintesis dan Karakterisasinya. UNY Press: Yogyakarta.

Vestince, B., Mbayachi, Euphrem Ndayiragije, Thirasara Sammani, Sunaina Taj, Elice R. Mbuta, & Atta ullah khan. (2021, August). Graphene Synthesis, Characterization, and Its Applications: A Review. Results in Chemistry, 3, p.2. https://doi.org/10.1016/j.rechem.2021.100163.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License


View My Stats