Synthesis and Characterization of Graphene Using Coconut Shell Charcoal

Amalia Sholehah, Naufal Eka Vinanza, Nurul Huda, Wara Dyah Pita Rengga

Abstract

Coconut shell waste has great potential as a source of carbon in the future. Graphite is one of the carbon allotropes with layers of planar layered carbon atoms. One layer of graphite is called graphene with hexagonal carbon atomic structure. In this study, the Hummers method was used to obtain graphene from coconut shell waste. This method breaks the bonding graphite layer into graphene by utilizing the process of mixing a mixture of graphite and HCl solution with the addition of KMnO4 and NaNO3. Raman Spectroscopy characterization shows the formation of multilayer graphene with D, G, and 2D values in 1365, 1585, and 2865 cm-1. The Fourier Transform Infrared Spectroscopy characterization confirmed the bonds of C-O, C = C and C = O at 1220, 1580, and 1700 cm-1. Meanwhile, X-Ray Diffraction characterization showed a peak of diffraction of graphene at 2θ at 11.6o; 23.9o; and 43.5o. The graphene produced becomes more transparent with the length of time of stirring, and the smaller the size of the graphite particles results in the irregularity of the graphene crystal structure.

Keywords

Limbah Tempurung Kelapa, Grafena, Metode Hummer

Full Text:

PDF

References

Blanton, T.N. & Majumdar, D. (2012) ‘X-ray diffraction characterization of polymer intercalated graphite oxide’, Powder Diffraction, 2106, 104–107.

Chafidz., A. Rengga, W.D.P., Khan, R., Kaavessina, M., Almutlaq, A.M., Almasry, W.A., Ajbar, A. (2017) 'Polypropylene/multiwall carbon nanotubes nanocomposites: Nanoindentation, dynamic mechanical, and electrical properties'. Journal of Applied Polymer Science. 134(37), 45293.

Cho, B., Yoon, J., Hahm, M. G., Kim, D. H., Kim, A. R., Kahng, Y. H., Park, S. W., Lee, Y. J., Park, S. G., Kwon, J. D., Kim, C. S., Song, M., Jeong, Y., Nam, K. S., & Ko, H. C. (2012) ‘Graphene-based gas sensor: metal decoration effect and application to a flexible device’, Journal of Materials Chemistry C, 1–7.

Elessawy, N. A., Ali, S. M., Farag, H. A., Konsowa, A. H., Elnouby, M., & Hamad, H. A. (2017) ‘Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution’, Ecotoxicology and Environmental Safety. Elsevier Inc., 145, 57–68.

Grodecki, K., Jozwik, I., Baranowski, J. M., Teklinska, D., & Strupinski, W. (2016) ‘SEM and Raman analysis of graphene on SiC ( 0001 )’, Micron. Elsevier Ltd, 80(2), 20–23.

Hidayah, N. M. S., Liu, W. W., Lai, C. W., Noriman, N. Z., Khe, C. S, Hashim, U., & Lee, H C. (2017) 'Comparison on graphite, graphene oxide and reduced graphene oxide: synthesis and characterization', AIP Conference Proceedings, 1892, 150002-1-150002–8.

Hulman, M. (2014) ‘Raman spectroscopy of graphene’, in Graphene: Properties, Preparation, Characterisation, and Devices. Cambridge, UK: Woodhead Publishing Ltd, 156–183.

Kang, J. H., Kim, T., Choi J., Park, J., Kim, Y. S., Chang, M. S., Jung, H., Park, K. T., Yang, S. J., & Park, C. R. (2016) ‘Hidden Second Oxidation Step of Hummers Method’, Chemistry of Materials, 756–764.

Somanathan, T., Prasad, K., Ostrikov, K. K., Saravanan, A. & Krishna, V. M. (2015) 'Graphene oxide synthesis from agro-waste', Nanomaterials, 5, 826–834.

Song, J., Wang, X., & Chang, C. (2014) ‘Preparation and characterization of graphene oxide’, Journal of Nanomaterials, pp. 1–6.

Syafrudin, Zaman, B., Indriyani, Erga, A.S., & Natalia, H.B. (2015) The Utilization of Bottom Ash Coal for Briquette Products by Adding Teak Leaves Charcoal, Coconut Shell Charcoal, and Rice Husk Charcoal, Waste Technology. 3(1), 14-21.

Tang, Y., Huang, F., Zhao, W., Liu, Z., & Wan, D. (2012) ‘Synthesis of graphene-supported Li4Ti5O12 nanosheets for high rate battery application’, Journal of Materials Chemistry, 11257–11260.

Thema, F. T., Moloto, M. J., Dikio, E. D., Nyangiwe, N. N., Kotsedi, L., Maaza, M., & Khenfouch, M. (2013) ‘Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide’, Journal of Chemistry, 1–6.

Ţucureanu, V., Matei, A., & Avram, A. M. (2016) ‘FTIR spectroscopy for carbon family study’, Critical Reviews in Analytical Chemistry. Taylor & Francis, 46(6), 502–520.

Wall, M. (2011) ‘The Raman spectroscopy of graphene and the determination of layer thickness’. Madison: Thermo Scientific, 1–5.

Wang, J.-T., Qian, Y., Weng, H., Wang, E., & Chen, C. (2019). Three-Dimensional Crystalline Modification of Graphene in all-sp2 Hexagonal Lattices with or without Topological Nodal Lines. The Journal of Physical Chemistry Letters. 10, 2515-2521.

Yusnafi (2012) ‘Karakterisasi nanostruktur karbon dari grafit hasil milling’, Metalurgi: Majalah Ilmu dan Teknologi, 279–286.

Zhang, C., Zhu, X., Wang, Z., Sun, P., Ren, Y., Zhu, J., & Zhu J. (2014) 'Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors', Nanoscale Research Letters. 9(1):490 1–8.

Refbacks

  • There are currently no refbacks.