Analysis of mathematical representation ability based on students' thinking style in solving open-ended problems

##plugins.themes.academic_pro.article.main##

Dita Indah Hadiastuti
Edy Soedjoko

Abstract

This study aimed to know whether students’ mathematical representation ability reach the classical completeness and to describe students’ mathematical representation based on their thinking style, namely Concrete Sequential (CS), Abstract Sequential (AS), Abstract Random (AR), and Concrete Random (CR).  This study used mixed methods as the research design. Population in this study was 10th graders in one vocational school in Pati. The sample was a class chosen randomly. The subjects of this research were 8 students consisted of 2 of every thinking style type. The methods of data collection of this research were questionnaires of thinking style,   mathematical representation ability test, interviews, and documentation. The results showed that: (1) students’ mathematical representation ability reached the classical completeness and (2) the students’ mathematical representation ability based on their thinking style are (a) the CS students have moderate visual ability, excellent symbolic ability, and  poor  verbal  ability;  (b)  the AS students have moderate visual ability, excellent symbolic ability and less verbal ability; (c) the AR students have moderate visual and verbal ability,  and good symbolic ability; and (d) the CR students have moderate visual ability, excellent symbolic ability, and poor verbal ability.

##plugins.themes.academic_pro.article.details##

How to Cite
Hadiastuti, D., & Soedjoko, E. (2019). Analysis of mathematical representation ability based on students’ thinking style in solving open-ended problems. Unnes Journal of Mathematics Education, 8(3), 195-201. https://doi.org/10.15294/ujme.v8i3.34189

References

Albanese, M. A., & Mitchell, S. (1993). Problem-based learning: A review of literature on its outcomes and implementation issue. Academic Medicine,68, 52-81.
Arends, R I. 2012. Learning to Teach ninth edition. New York : McGraw-Hill.
Dahlan, J. A. & Juandi, D. 2011. Analisis Representasi Matetmatik Siswa Sekolah Dasar dalam Penyelesaian Masalah Matematika Kontekstual. Jurnal Pengajaran MIPA. 16: 128-138. Tersedia di http://journal.fpmipa.upi.edu/index.php/jpmipa/article/download/273/184 [Diakses 23-03-2018]
Depdikbud. 2013. Modul Pengembangan Analisis Hasil Belajar Peserta Didik. Jakarta: Depdikbud.
Depdiknas. 2006. Panduan Penyusunan Kurikulum Tingkat Satuan Pendidikan Jenjang Pendidikan Dasar dan Menengah. Jakarta: Badan Standar Nasional Pendidikan.
De Porter, Bobbi & Hernacki, Mike. (2013). Quantum Learning. Bandung: Kaifa.
Farhan, M & Retnawati H. 2014. Keefektifan PBL dan IBL Ditinjau dari Prestasi Belajar, Kemampuan Representasi Matematis, dan Motivasi Belajar. Jurnal Riset Pendidikan Matematika. 1 (2): 227-240. Tersedia di https://journal.uny.ac.id/index.php/jrpm/article/view/2678/2231 [Diakses 24-04-2018]
Gibson, S. E. (2002). Using a problem based, multimedia enhanced approach in learning about teaching. Australian Journal of Educational
Technology, 18, 394-409.
Jaenudin. 2009. Pengaruh Pendekatan Kontekstual terhadap Kemampuan Representasi Matematik Beragam Siswa SMP. Artikel Penelitian. Bandung: UPI. Tersedia di http://publikasi.stkipsiliwangi.ac.id/files/2014/12/Prosiding-SemnasSTKIP-2014.pdf [diakses 29-01-2016].
Kemdikbud. 2013. Kurikukum 2013. Jakarta: Kementrian Pendidikan dan Kebudayaan.
Lestanti, M. M., Isnarto, & Supriyono. 2016. Analisis Kemampuan Pemecahan Masalah Ditinjau dari Karakteristik Cara Berpikir Siswa dalam Model Problem Based Learning. Unnes Journal of Mathematics Education, 5(1):18.
Livne, N.L. (2008) Enhanching Mathematical Creativity through Multiple Solution to Open-Ended Problems Online. [Online] Tersedia di: http://www.iste.org/Content/NavigationMenu/Research/NECC_Research_Paper_Archives/NECC2008/Livne.pdf. [diakses tanggal 18 April 2019]
Mahmudi, A. 2008. Mengembangkan Soal Terbuka (Open-Ended Problem) dalam Pembelajaran Matematika. Makalah disajikan pada Seminar Nasional Matematika dan Pendidikan Matematika. Yogyakarta.
McPhee, A. D. (2002). Problem-based learning in initial teacher education: Taking the agenda forward. Journal of Educational Enquiry, 3, 60–78.
Moleong, L. J. 2013. Metodelogi Penelitian Kualitatif. Bandung: Remaja Rosdakarya.
NCTM. 2000. Principles and Standards for School Mathematics. United State of America: Library of Congress Cataloguing.
Novira, R., Mulyono, & Isnarto. (2019). Kemampuan Representasi Matematis Siswa dalam Model Pembelajaran Somatic, Auditory, Visualization, Intellectually. PRISMA, Prosiding Seminar Nasional Matematika2, 287-292
Pedersen, S., & Liu, M. (2002). The transfer of problem-solving skills from a problem based learning environment: The effect of modeling an expert’s cognitive processes. Journal of Research on Technology, 35, 303-320.
Sabirin, M. 2014. Representasi dalam Pembelajaran Matematika. JPM IAIN Antasari, 1(2): 33-34.
Savin-Baden, M. (2000). Problem-based learning in higher education: Untold stories. Buckingham, England: SRHE/ Open University Press.
Shimada, S., & Becker J.P., (1997). The Open-Ended Approach. A New Proposal for Teaching Mathematics. Virginia: NCTM.
Takahashi, Akihiko. (2008). Communication as Process for Students to Learn Mathematical. [Online]. Tersedia: http://www.criced.tsukuba.ac.jp/math/apec/apec2008/papers/PDF/14.Akihiko_Takahashi_USA.pdf [17 April 2019]
Tandililing, E. 2015. Effectivity of Problem Based Learning (PBL) in Improving Students' Mathematical Representation. Proceeding of International Conference On Research, Implementation And Education Of Mathematics And Sciences , 147-152.
Wulandari. 2013. Pengaruh Problem-Based Learning Terhadap Hasil Belajar Ditinjau dari Motivasi Belajar PLC di SMK. Jurnal Pendidikan Vokasi. 3:178-191. Tersedia di https://journal.uny.ac.id/index.php/jpv/article/view/1600/1333 (diakses 24-04-2018)
Yudhanegara, M. R. & K. E. Lestari. 2014. Meningkatkan Kemampuan Representasi Beragam Matematis Siswa Melalui Pembelajaran Berbasis Masalah Terbuka. Jurnal Ilmiah Solusi. 3: 76-85.

Most read articles by the same author(s)

1 2 > >>