ANALISIS KECELAKAAN REAKTOR AKIBAT KEGAGALAN SISTEM PEMBUANG PANAS PADA REAKTOR NUKLIR GENERASI IV

A. G. Abdullah(1), Z. Su’ud(2),


(1) Program Studi Teknik Elektro, Fakultas Pendidikan Teknologi dan Kejuruan Universitas Pendidikan Indonesia (UPI), Bandung, Indonesia
(2) Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung (ITB), Bandung, Indonesia

Abstract

Salah satu aspek terpenting dalam proses desain reaktor nuklir adalah aspek keselamatan reaktor. Sebelum membangun reaktor secara fisik, terlebih dahulu dibuat perencaaan perhitungan yang matang termasuk melakukan simulasi kinerja keselamatannya dalam menghadapi kemungkinan kecelakaan. Penelitian ini bertujuan untuk mengembangkan model simulasi kecelakaan Pembangkit Listrik Tenaga Nuklir (PLTN) yang disebabkan  gagalnya sistem pembuang panas. Kecelakaan akibat gagalnya sistem pembuang panas dipicu oleh hilangnya kemampuan pendinginan dari pembangkit uap. Urutan kecelakaan ini diawali dengan hilangnya kemampuan reaktor untuk membuang panas dari loop pendingin sekunder. Selama kecelakaan, laju pembuangan panas mengalami penurunan sedangkan temperatur masukan pendingin mengalami peningkatan. Hasil simulasi memberikan gambaran bahwa reaktor dapat bertahan dari kecelakaan. Hasil analisis kecelakaan menunjukkan bahwa temperatur maksimum bahan bakar, selongsong dan pendingin memiliki batas keselamatan yang sangat besar.



One of the most important aspects in nuclear reactor design process is the safety aspect. Advanced and accurate safety simulation must be performed before it can be built.  This research aims to develop a simulation model of Nuclear Power Plant (NPP) accidents due to the loss of  heat sink system. Loss of heat sink accident was triggered by the loss of cooling capability of steam generators.  This  accident  sequence  began with the loss of the reactor’s ability to remove heat from the secondary cooling loop. During the accident, the heat dissipation rate decreased whereas the coolant inlet temperatures increased till a new equilibrium level. The analysis results of the accident showed that there are large safety margin to the maximum temperature of the fuel, cladding, and coolant.

Keywords

accident analysis; unprotected loss of heat sink; generation IV nuclear reactor

Full Text:

PDF

References

Abdullah, A., G., Su’ud, Z. dan Yulianti, Y. 2009. ULOF Accident Analysis for 300 MWth Pb-Bi Cooled MOX Fuelled SPINNOR Reactor, Proceeding 2nd International Conference on Advances in Nuclear Science and Engineering (ICANSE), ITB, Bandung

Duderstadt J.J. and Hamilton L.J. 1978. Nuclear Reactor Analysis, John Wiley and Sons

Gaheen, M.A., Elaraby, S., Aly, M.N. dan Nagy, M.S. 2007. Simulation and Analysis of IAEA Benchmark Transient, Progress in Nuclear Energy, 49: 217-229

Hossain, K., Buck, M., Ben, S.N., Bernnat, W. dan Lohnert, G., 2008. Development of a Fast 3D Thermal-Hydraulic Tool for Design and Safety Studies for HTRS, Nuclear Engineering and Design

Kazeminejad, H. 2008. Thermal-Hydraulic Modeling of Flow Inversion in a Research Reactor, Annals of Nuclear Energy, 35: 1813-1819

Kim Y.H. dan Yang C.K. 2005. Development of Safety Analysis Methodology for Reactivity Insertion Accidents using Modified RETRAN Code, Journal of Nuclear Science and Technology, 42: 1001–1009

Sanchez, J. 1989. On The Numerical Solution of The Point Kinetics Equations by Generalized Runge–Kutta Method. Nuclear Science and Engineering, 103: 94–99

Su’ud, Z. 1998. Comparative Study on Safety Performance of Nitride Fueled Lead Bismuth Cooled Fast Reactor With Various Power Levels, Progress in Nuclear Energy, 32: 571-577

Su’ud, Z. 2007. Advanced SPINNORs Concept and The Prospect of Their Deployment in Remote Area, International Conference on Advances in Nuclear Science and Engineering, Bandung, 199-207

Su’ud, Z. 2008. Safety Performance Comparation of MOX, Nitride and Metallic Fuel Based 25-100 MWe Pb-Bi Cooled Long Life Fast Reactors without On-Site Refuelling, Progress in Nuclear Energy, 50: 157-162

Yan, M. dan Sekimoto, H. 2008. Safety Analysis of Small Long Life CANDLE Fast Reactor, Annals of Nuclear Energy, 35: 813–828

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License