PENINGKATAN KINERJA SISTEM KESELAMATAN PASIF PADA REAKTOR NUKLIR DENGAN PENAMBAHAN KOMPONEN RVACS

A. G. Abdullah(1), N. P. Ardiansyah(2), W. Purnama(3),


(1) Jl. Dr. Setiabudi No. 225, Bandung, Jawa Barat 50154
(2) Program Studi Teknik Elektro, Fakultas Pendidikan Teknologi dan Kejuruan Universitas Pendidikan Indonesia (UPI), Bandung, Indonesia
(3) Program Studi Teknik Elektro, Fakultas Pendidikan Teknologi dan Kejuruan Universitas Pendidikan Indonesia (UPI), Bandung, Indonesia

Abstract

Kelengkapan sistem keselamatan pasif dan inheren pada reaktor lanjut merupakan prasyarat utama. Makalah ini mengeksplorasi hasil desain konseptual sistem pembuang sisa panas pada pusat listrik tenaga nuklir berjenis Very High-Temperature Reactor. Tujuan riset ini untuk merancang sistem pembuang sisa panas pusat listrik tenaga nuklir yang terdapat pada dinding reaktor. Studi kinerja Reactor Vessel Auxliary Cooling System (RVACS) dilakukan pada dua jenis pendingin yaitu Timbal-Bismut dan Liquid Salt. Panas dari dinding reaktor dihapus melalui sirkulasi alamiah pada keadaan tunak. Analisis melibatkan sistem perpindahan panas secara radiasi, konduksi dan konveksi alami. Perhitungan perpindahan panas dilakukan pada elemen reaktor vessel, dinding luar guard vessel, dan pelat pemisah. Hasil analisis kecelakaan menunjukkan kedua jenis sistem pendingin reaktor dan sistem pasif sisa pembuangan panas cukup menghapus sisa panas hasil peluruhan dengan sirkulasi alami.

ABSTRACT

Completeness of passive safety systems and inherent in advanced reactors is a major prerequisite. This paper explores the results of a conceptual design of the heat removal system at the nuclear power plant (NPP) type Very High-Temperature Reactor. The purpose of this research was to design the reactor vessel auxiliary cooling system (RVACS) of NPP located within the reactor walls. The RVACS performance study was conducted on two types of coolant: Lead-Bismuth and Liquid Salt. Heat was removed from the reactor vessel through the natural circulation in the steady state. Analyses of heat transfer systems involved radiation, conduction and natural convection. Heat transfer calculations were performed on the reactor vessel, guard vessel, and perforated plate. The results from the accident analysis showed that both types, the reactor coolant system and the passive residual heat removal system, adequately remove remaining heat of the decay by a natural circulation.

Keywords

decay heat removal; nuclear power plant; RVACS; VHTR

Full Text:

PDF

References

Abdullah A., G., Su’ud, Z., Shafii, M., A., (2011), Desain Konseptual Sistem Keselamatan Pasif pada Reaktor Cepat Berpendingin Timbal-Bismut, Prosiding Seminar Nasional Sains dan Teknologi Nuklir PTNBR – BATAN, Bandung, p.107-112.

Ahlfeld C., Burke T., Ellis T., Hejzlar P., Weaver K., Whitmer C., Gilleland J., Cohen M., Johnson B., , Mazurkiewicz S., McWhirter J., Odedra A., Touran N., Davidson C, Walter J., Petroski R., Zimmerman G., Weaver T., Schweiger P. and Russick R., (2011) Conceptual Design of a 500 MWe Traveling Wave Demonstration Reactor Plant, Proceedings of ICAPP 2011 Nice, France, May 2-5, 2011 Paper 11199

Boardman C., Dubberley A., Carrol D., Hui M., Fanning A. dan Kwant W. (2000) : A Description of the S-PRISM Plant, Proceedings of ICONE 8, Baltimore, MD, USA.

Chapin, D., Kiffer, S., Nestell, J., (2004), The Very High Temperature Reactor: A Technical Summary, MPR Associates, Inc, Alexandria

Davis, C. B., and Hawkes G. L., (2006), Thermal-Hydraulic Analyses Of The LS-VHTR, Idaho National Laboratory.

Eoh J.H., Kim J.B., Kim S.J. dan Kim S.O. (2005), Design and Performance of the Passive Decay Heat Removal System in a Lead-cooled Fast Reactor, Proceedings of ICAPP , Seoul, Korea.

Forsberg C., W., (2006), Alternative Passive Decay-Heat Systems for the Advanced High-Temperature Reactor, Proceedings of ICAPP ’06, Reno, NV USA, June 4–8 2006, paper 6055.

Heineman, J., Kraimer, M., dan Lottes, P., (1998), Experimental And Analitycal Studies of A Passive Shutdown Heat Removal System for Advanced LMR’s, Argone National Laboratory, Illinois.

Lamars, J.R. and Baratta, A.J., (2001), Introduction to Nuclear Engineering, 3rd Ed., Prentice Hall, New Jersey.

Nikiforova, A., Hejzlar, P., dan Todreas, N., E. (2009), Lead-Cooled Flexible Conversion Ratio Fast Reactor, Nuclear Engineering and Design, 239, 2596-2611.

Novitrian, Waris, A., Viridi, S., Su’ud, Z., (2013), Preliminary Study of Safety Analysis of Pb-Bi Cooled Small Power Reactor with Natural Circulation, Advanced Materials Research, Vol. 772, p 519-523.

Su’ud, Z.,(1996), Accident Analysis of Lead or Lead-Bistmuth Cooled Small Safe Long-Life Fast Reactor using Metallic or Nitride Fuel, Nucl. Eng. And Design, 162, p 205-222.

Triplett B., S., Loewen E., P., Dooies, B., J., (2012), PRISM: A Competitive Small Modular Sodium-Cooled Reactor, Nuclear Technology, Vol. 178, p186-200.

Westhinghouse Electric Company (2011) , Passive Safety-Related System, http://www.ap1000.westhinghousenuclear.com/ap1000-safety_psrs.html.

Whitman, J., (2007), Design of Passive Decay Heat Removal System for The Lead Cooled Flexible Conversion Ratio Fast Reactor, Nuclear Science and Engineering, Massachusetts Institute of Technology.

Wibisono, A., F., Ahn, Y., Wesley C. W., Addad, Y., Jeong Ik Lee, (2013), Studies of Various Single Phase Natural Circulation Systems for Small and Medium Sized Reactor Design, Nuclear Engineering and Design, Vol. 262, September 2013, p390–403.

Zhukov, A. V., Sorokin, A. P, Kuzina, Yu. A., 2013, Emergency cooling down of fast-neutron reactors by natural convection (a review), Thermal Engineering, Vol. 60, Issue 5, pp.345-354

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License