SOLID WASTE-SILICA COMPOSITE FOR HIGH STRENGTH AND LIGHTWEIGHT MATERIAL APPLICATION

M. Masturi(1), S. Rustad(2), S. Sunarno(3), N. Hindarto(4),


(1) Physics of Mathematics and Natural Sciences Faculty of State University of Semarang, Semarang, Indonesia Kampus Sekaran Gunungpati Semarang 50229
(2) Dian Nuswantoro University of Semarang, Nakula Street No. 1 Semarang, Indonesia
(3) Physics of Mathematics and Natural Sciences Faculty of State University of Semarang, Semarang, Indonesia Kampus Sekaran Gunungpati Semarang 50229
(4) Physics of Mathematics and Natural Sciences Faculty of State University of Semarang, Semarang, Indonesia Kampus Sekaran Gunungpati Semarang 50229

Abstract

The solid waste composite was successfully made. Preliminary, the composite was synthesized using polyurethane as binder mixed with the solid waste using simple mixing method and then hot-pressed at at pressure of 4 metric-tons and temperature of 100°C for 20 minutes. To enhance its strength, silica nanoparticles with varied content then were added in the polyurethane-solid waste mixture. From the compressive strength test, it was obtained that polyurethane-solid waste composite with solid waste volume fraction of 87.15% had optimum compressive strength of 160 MPa. Meanwhile, for silica addition with the fraction of 0.4975%, the compressive strength became 200 MPa, or increased 23% of that without nanosilica. The enhancement was also briefly confirmed from FTIR Spectroscopy where some polyurethane spectra shifted small due to silica addition, especially in amine and carbonyl groups as its active groups. The strength is better than of brick (80 MPa), shalestone (73 MPa), silstone (92 MPa) and other stones. From density measurement, the composite-produced has density about 0.7 g/cm3 that comparable to Jati (Tectona grandis) and Mahoni (Swietenia macrophylla) having densities about 0.8 g/cm3 and 0.7 g/cm3 respectively. Therefore, this composite is very adequate for building material application to compete the woods.  

Komposit sampah sudah berhasil dibuat. Mula-mula, komposit disintesis dengan menggunakan poliuretan sebagai pengikat yang dicampur dengan sampah melalui metode pencamnpuran sederhana (simple mixing), kemudian dihot-press pada tekanan 4 metric ton dan suhu 100°C selama 20 menit. Untuk meningkatkan kekuatan mekaniknya, nanopartikel silica dengan berbagai komposisi ditambahkan dalam campuran poliuretan-sampah. Dengan menggunakan uji kekuatan tekan, didapatkan komposit poliuretan-sampah dengan fraksi volume sampah sebesar 87,15% memiliki kekuatan tekan sebesar 160 MPa. Selanjutnya, dengan penambahan silica sebesar 0,4975% (v/v) kekuatan tekan komposit menjadi 200 MPa, atau meningkat sebesar 23% dibandingkan komposit tanpa silica. Peningkatan ini juga dikonfirmasi melalui FTIR Spectroscopy yang menunjukkan adanya pergeseran kecil pada puncak spektra poliuretan akibat penambahan silica, utamanya pada gugus fungsi amina dan karbonil. Kekuatan mekanik komposit ini lebih baik daripada batu bata (80 MPa), batuan shale (73 MPa), batuan siltstone (92 MPa) dan beberapa jenis batuan yang lain. Dengan menggunakan uji kerapatan didapatkan komposit ini memiliki massa jenis 0,7 g/cm3, setara dengan kayu Jati (Tectona grandis) dan Mahoni (Swietenia macrophylla) yang memiliki massa jenis masing-masing 0,8 g/cm3 dan 0,7 g/cm3. Ini menunjukkan komposit yang dihasilkan sangat cocok untuk diaplikasikan sebagai bahan bangunan pengganti kayu.

Keywords

nanocomposite, silica, polyurethane, solid waste, compressive strength

Full Text:

PDF

References

Alilou V.K., Teshnehlab M. (2010). Prediction of 28-day compressive strength of concrete on the third day using artificial neural networks, Int. J. Eng., 6, 565 – 576.

Baldan A. (2004). Review adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: adhesives, adhesion theories and surface pretreatment, J. Mater. Sci., 39,1 – 49.

Chang C., Zoback M.D., A. Khaksar A. (2006) Empirical relations between rock strength and physical properties in sedimentary rocks, J. Petroleum Sci. Eng., 223–237.

Gan Y.X. (2009). Effect of interface structure on mechanical properties of advanced composite materials, Int. J. Mol. Sci., 10, 5115-5134.

G. Lefevre G., Joviet A. (2009). Calculation of Hamaker constants applied to the deposition of metallic oxide particle at high temperature. Proc. Int. Conf. Heat Exchanger Fouling Cleaning VIII, Schladming, Austria, 2009, pp. 120 – 124.

Hadiyawarman, Rijal A., Nuryadin B.W., Abdullah M., Khairurrijal. (2008). Fabrication of superstrong, lightweight and transparent nanocomposite materials using simple mixing method, J. Nanosains Nanoteknologi, 1, 15 – 21.

Hunt A., (2008). Complete A-Z Chemistry Handbook, 3rd edn, Hoddler, London.

Isnaeni V.A., Arutanti O., Sustini E., Aliah H., Khairurrijal, Abdullah M. (2013). A novel system for producing photocatalytic titanium dioxide-coated fibers for decomposing organic pollutants in water., Environ. Progress Sustainable Energy. 32(1), 42-51.

Khudyakov I.V., Zopf R.D., Turro N.J. (2009). Review: Polyurethane Nanocomposites, Designed Monomer Polym., 12, 279–290.

Krishnamurthy M., Murad S., Olson J.D. (2006). Molecular dynamics simulation of Henry’s constant of argon, nitrogen, methane and oxygen in ethylene oxide, Mol Simul, 32,11–16.

Kumagai S., Sasaki J. (2009). Carbon/silica composite fabricated from rice husk by means of binderless hot pressing, Bioresource Technol., 100, 3308–3315.

Lavorgna M., Cerruti P., Casula G., Iannace S., Harper J.F. (2007). Curing characteristics and mechanical properties of carbon fiber-interlayered fabric composites based on a polyurethane matrix, Adv. Polym. Technol., 26, 132 – 145.

Lee S.I., Hahn Y.B., Nahm K.S., Lee Y.S. (2005). Synthesis of polyether-based polyurethane-silica nanocomposites with high elongation property, Polym. Adv. Technol., 16, 328–331.

Maafi E.M., Malek F., Tighzert L., Dony P. (2010). Synthesis of Polyurethane and Characterization of its Composites Based on Alfa Cellulose Fibers. J Polym Environ, 18, 638-646.

Martawijaya A. (1992). Indonesian Wood Atlas Vol. Departemen Kehutanan RI, Bogor.

Masturi, Abdullah M., Khairurrijal. (2011a). High compressive strength of home waste and polyvinyl acetate composites containing silica nanoparticle filler, J Mater Cycles Waste Manag, 13, 225-231.

Masturi, Aliah H., Aji M.P., Sagita A.A., Bukit M., E. Sustini, Khairurrijal, Abdullah M. (2011b), Effect of silica nanoparticles on compressive strength of leaves-waste composite, AIP Conference Proc., 1415, 90 - 93.

Matyka M., Khalili A., Koza Z. (2008). Tortuosity porosity relation in porous media flow, Phys. Rev. E, 78, 0263061 – 0263068.

Moh’d B.K. (2009). Compressive strength of vuggy oolitic limestones as a function of their porosity and sound propagation, Jordan J. Earth Environ. Sci., 1, 18-25.

Rouhaa M., Nezbeda I. (2009), Non-Lorentz–Berthelot Lennard-Jones mixtures: A systematic study, Fluid Phase Equilibria, 1, 42–48.

Sastre M.A.R., Clavero M.G., Alonso M.T. (2008). Relationship between cleavage orientation, uniaxial compressive strength and Young’s modulus for slates in NW Spain, Bull. Eng. Geol. Environ., 67, 181-186.

Soewarsono P.H. (1990). Specific Gravity of Indonesian Woods and Its Significance for Practical Use, Departemen Kehutanan RI, Bogor.

Tan H., Jiang L.Y., Huang Y., Liu B., Hwang K.C. (2007). The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials, Compos. Sci. Technol., 67, 2941–2946.

Türünç O. , Apohan N.K., Kahraman M.V., Menceloglu Y., Gungor A. (2008). Noniso-cyanate based polyurethane/silica nanocomposites and their coating performance, J. Sol-Gel Sci.Technol., 47, 290 – 299.

Volkov A.V., Myasnikova N.A., Kolesnikov V.I.,Konovich M.Z. (1990). Molecular interaction in composite materials based on polycaproamide and epoxy resins (Transl.), Mekhanika Kompozitnykh Materialov, 3, 398–402.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License