STUDY ON PHYSICAL-CHEMICAL PROPERTIES OF FURNACE-NICKEL-SLAG POWDER FOR GEOPOLYMER APPLICATION
(1) Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
(2) Department of Physics, Faculty of Mathematics and Sciences, Universitas Negeri Makassar, Indonesia
(3) Department of Physics, Faculty of Mathematics and Sciences, Universitas Negeri Makassar, Indonesia
(4) Department of Physics, Faculty of Mathematics and Sciences, Universitas Negeri Makassar, Indonesia
Abstract
This research aims to prepare powder of nickel slag from furnace machine, identify, and analyze of the elements or compounds containing in the sample. The data retrieval was done with the analysis of elemental composition, phase microstructures, crystal size, distribution, and composition mapping of the samples by using XRD, Rigaku Miniflex II, and SEM-EDS, Tescan Vega-3. XRD result indicates that the formation which the similar to amorphous phase was identified and the formation at peak 2? = 28.01° is identified as the low quartz (SiO2). FWHM 0.18° was obtained using microcal origin 6.0 and average crystal size 53.37 nm was obtained by applying Scherer equation. SEM results show average grain size of samples which is less than 1?m and maximum to 4?m. Based on EDS result, the main constituent elements are Si 32.86 wt%, Mg 19.40 wt%, and Fe 32.03 wt%, respectively.
Penelitian ini bertujuan untuk menyiapkan bubuk slag nikel yang berasal dari furnace, yang dilanjutkan dengan mengidentifikasi dan menganalisis unsur atau paduan yang terkandung di dalamnya. Data diperoleh dengan melakukan analisis terhadap komposisi unsur, fasa mikrostruktur, ukuran Kristal, distribusi dan komposisi paduan dari sampel bubuk slag nikel furnace dengan menggunakan XRD tipe Rigaku Miniflex II dan SEM-EDS tipe Tescan Vega-3. Hasil analisis XRD menunjukkan bahwa formasi yang dihasilkan menyerupai fase amorf dan formasi yang terbentuk pada puncak 2? = 28.01° diidentifikasi sebagai low quartz (SiO2). Dengan menggunakan microcal origin 6.0 diperoleh FWHM 0.18 ° dan menggunakan persamaan Scherer diperoleh rata-rata ukuran kristal 53.37 nm. Hasil pengukuan SEM menunjukkan bahwa rata-rata ukuran butir dari sampel bubuk slag nikel furnace bervariasi antara minimal 1?m dan maksimum 4 ?m. Berdasarkan pengukuran EDS diperoleh secara berturut-turut bahwa unsur utama penyusun paduan slag nikel furnace adalah Si 32.86 wt%, Mg 19.40 wt%, dan Fe 32.03 wt%.
Keywords
Full Text:
PDFReferences
ASA. (2011). Blast Furnace Slag Aggregates Properties, Characteristics and Applications, Retrieved from http://www.asa-inc.org.au/documents/ASA-ReferenceDataSheet-2.pdf.
Cheng, T. W., & Chiu, J. P. (2003). Fire-resistant geopolymer produced by granulated blast furnace slag. Minerals Engineering, 16(3), 205-210.
Davidovits, J. (1994). High-Alkali Cements for 21st Century Concretes.Proceedings of V. Mohan Malhotra Symposium, Editor: P. Kumar Metha, ACI SP- 144 (pp. 383-397). Berkeley:,Ucla.
Deng, P., Liu, Y., Yao, W., Ma, H. (2014). Production of Primary Magnesium by the Aluminothermic Reduction of Magnesia Extracted from Dolomite Ore. J. Material Science Forum, 788, 28-33.
Ghosh, D., Krishnamuthy, V.A., Sankaranayanan, S.R. (2010). Application of Optical Basicity to Viscosity of High Alumina Blast Furnace Slags, Min.Metall. Sect. B-Metall, 46(1), 41-49.
Huang, Y., Bird, R. N., & Heidrich, O. (2007). A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52(1), 58-73.
Khalil, M.N., Saad, E.E., Wahsa (2012). “Extraction Nanosized α-Fe2O3 Particles From Hematite Ore” Proceeding of the 3rd International Conference on Chemistry and Chemical Engineering(pp. 82-87). Singapore: IPCBEE.
Kumar, L., Kumar, P., Narayan, A., & Kar, M. (2013). Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. International Nano Letters, 3(1), 1-12.
Maragkos, I., Giannopoulou, I. P., & Panias, D. (2009). Synthesis of ferronickel slag-based geopolymers. Minerals Engineering, 22(2), 196-203.
Motz, H., Geizeler, J. (2010). Products of Steel Slag an Opportunity to Save Natural Resources, J. Waste Management, 21(3), 285-293.
Mu, W. N., Zhai, Y. C., & Yan, L. I. U. (2010). Leaching of magnesium from desiliconization slag of nickel laterite ores by carbonation process. Transactions of Nonferrous Metals Society of China, 20, 87-91.
Optaminerals (n.d.). Ultrablast - Nickel Slag. Retrieved from: http://www.optaminerals.com/abbrasives/Ultrablast-Nickel-Slag.html
Pan, C., Lv, X., Bai, C., Liu, X., & Li, D. (2013). Melting features and viscosity of SiO2-CaO-MgO-Al2O3-FeO nickel slag in laterite metallurgy. Journal of Mining and Metallurgy B: Metallurgy, 49(1), 9-12.
Prederiy, I. (2011). Dissolution of Valuable Metals from Nickel Smelter Slags by Means of High Pressure Oxidative Acid Leaching, Canada: University of Toronto.
Rangan, B. V. (2010). Fly Ash-Based Geopolymer Concrete.Proceedings of the International Workshop on Geopolymer Cement and Concrete, (pp. 68-106). Mumbai: Allied Publishers Private Limited.
Sujiono, E.H., Sani, R.A., Saragi, T., Arifin, P., Barmawi, M. (2001). YBa2Cu3O7—δ Thin Films Deposited by MOCVD Vertical Reactor with a Flow Guide, Physica Status Solidi (a)., 187(2), 471-479.
Wang, G., Thompson, R. (2011). Slag Use in Highway Construction-the Phylosophy and Technology of Its Utilization, International Journal of Pavement Research and Technology, 4(2), 97-103.
Wickenden, A.E, Kisthemnacer, D.K. (1994). The Effect of Thermal Annealing on GaN Nucleation Layers Deposited on (0001) Shapphire by Metalorganic and Chemical Vapor Deposition, Apply. Physc, 75(10), 5367-5371.
Zhang, G.H., Chou, K.C. (2012). Viscosity Model for Fully Liquid Silicate Melt, Min. Metall. Sect. B-Metall, 48(1)B 1-10.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License