MODEL PENDEKATAN PAKAR FISIKA DALAM MENYELESAIKAN MASALAH FISIKA KONTEKSTUAL: SEBUAH STUDI KASUS

M. Syukri(1), L. Halim(2), T. S. M. Meerah(3),


(1) Pendidikan Fisika, Fakultas Keguruan dan Ilmu Pendidikan Universitas Syiah Kuala, Banda Aceh, Indonesia
(2) Faculty of Education, The National University of Malaysia, Bangi, Malaysia
(3) Faculty of Education, The National University of Malaysia, Bangi, Malaysia

Abstract

Penelitian kualitatif ini bertujuan untuk menentukan pendekatan penyelesaian masalah fisika kontekstual oleh pakar fisika. Masalah fisika kontekstual dalam kajian ini merupakan soal fisika yang menggambarkan pengalaman hidup kita sehari-hari. Subjek penelitian terdiri dari sepuluh pakar fisika dari Universitas Syiah Kuala. Metode pengumpulan data yang digunakan adalah tes tulis dan wawancara terstruktur. Hasil penelitian menunjukkan bahwa pakar fisika melakukan 20 pendekatan penyelesaian masalah sewaktu menyelesaikan masalah fisika kontekstual. Seterusnya penelitian ini juga memperoleh satu pendekatan umum yang sering dijalankan oleh semua pakar fisika apabila mereka diminta untuk menyelesaikan masalah fisika kontekstual. Dalam pendekatan ini mereka melakukan; (a) mengumpulkan informasi, (b) menentukan prinsip/konsep, (c) mengidentifikasi variabel, (d) membuat hubungan kuantitatif, (e) membina persamaan spesifik, (f) membuat subtitusi, (g) membuat perhitungan, (h) membuat keputusan dan (i) memeriksa kembali jawaban. Sumbangan penelitian ini adalah satu model pendekatan penyelesaian masalah  fisika kontekstual oleh pakar fisika yang boleh digunakan sebagai garis panduan untuk membantu pelajar dalam menyelesaikan masalah fisika kontekstual.



This qualitative study aims to determine the contextual approach to solving physics problems by experts physics. Contextual physics problems in this study is a matter of physics that portray the experience of our daily lives. Research subjects consisted of ten experts from physics education, Syiah Kuala University. Data collection method used was a written test and structured interview. The results showed that physics experts do 20 approaches to solve the problem while solving the problem of contextual physics. So this study also found a general approach that is often executed by all physicists when they were asked to solve physics problems in context. In this approach, they do: (a) menghuraikan information, (b) determining the principles / concepts, (c) identified the variables, (d) make quantitative relationships, (e) develop specific equations, (f) make the substitution, (g) make calculation, (h) make decisions, and (i) to re-examine the answers. Contribution of this study is a model of a contextual approach to solving physics problems by experts in physics that be used as guidelines to assist students in solving physics problems contextual.

Keywords

contextual physics problems; model approach to problem solving

Full Text:

PDF

References

Bennet, C.E. 1973. Physics problem. New York: Barnes & Noble Books

Caliskan, S., Selcuk, G.S. & Erol, M. 2010. Intruction of Problem Solving Strategies: Effects on Physics Achievement and Self-Efficacy Beliefs. Journal of Baltic Science Education, 9(1): 20-34

Creswell, J.W. 2005. Educational research: planing, conducting and evaluating quantitative and qualitative research. New Jersey: Pearson

Depdiknas. 2003. Standar Kompetensi Mata Pelajaran Fisika SMA & MA. Jakarta: Pusat Kurikulum, Balitbang Depdiknas

Heckler, A.F. 2010. Some Consequences of Prompting Novice Physics Students to Construct Force Diagrams. International Journal of Science Education, 32(14): 1829-1851

Hewitt, P.G. 1998. Conceptual Physics. Ed. Ke-8. Reading: Addison-Wesley

Kuo, V.H., Heller, K., Heller, P., Henderson, C. & Yerushalmi, E. 2001. Instructors’ Ideas about Problem Solving-Grading. Proceedings of the Physics Education Research Conference, Rocester, NY

Lin, S.Y. & Singh, C. 2010. Using Analogy to Solve a Three-Step Physics Problem. Physics Education Research Conference, American Institute of Physics

Lopes, B.J. 2011. Pathway of Students’ Conceptualisation During a Problem Solving Task: Lessons for Teaching Physics. Journal of Baltic Science Education, 10(1): 36-52

Maloney, D.P. 1994. Research on problem solving: Physics. Dlm. Gabel D.L. (pnyt.). Handbook of Research Of Science Teaching And Learning . National Science Teacher Association, hlm. 327-354. New York: MacMillian Publishing Co

Nikkhah, A. 2011. Science Education of the New Millennium: Mentorship Arts for Creative Lives. Creative Education, 2(4): 341-345

Schloeglmann, W. 2004. Routines Non-Routine Problem Solving Processes. Austria: Johannes Kepler University Linz

Sharif, M. & Habib, A. R. 1996. Penggiraan, Penterjemahan dan Penyelesaian Masalah dalam Matematik: Kajian tentang Kesediaan Pelajar-pelajar Tingkatan Satu. Jurnal Pendidikan, 21:109-118

Slavin, R.E. 2000. Educational psychology: theory and practice. 6th Ed. Singapore: Allyn & Bacon

Stinner, A. 2006. The Large Context Problem (LCP) Approach. Interchange, 37(1-2): 19-30

Surif, J., Ibrahim, N.H. & Arshad. M.Y. 2007. Kajian pembinaan konseps sains berdasarkan model generative-metakognitive di kalangan pelajar. Laporan akhir projek penyelidikan Universiti Teknologi Malaysia 78147

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License