SIFAT MEKANIK BAHAN GESEK REM KOMPOSIT DIPERKUAT SERAT BAMBU

Sutikno -(1), S. E. Sukiswo(2), S. S. Dany(3),


(1) Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang (UNNES), Semarang, Indonesia
(2) Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang (UNNES), Semarang, Indonesia
(3) Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang (UNNES), Semarang, Indonesia

Abstract

Bahan gesek komposit diperkuat serat bambu untuk kampas rem otomotif dibuat menggunakan mesin pres isostatik panas pada 19oC selama 3 jam. Jumlah serat bambu dan serbuk logam di dalam pencampuran dioptimasi, setiap komposisi komponen lain dibuat tetap, pengaruhnya pada sifat-sifat mekanik dan struktur mikro diselidiki. Serat bambu disini digunakan sebagai pengganti serat asbes yang jumlahnya divariasi antara 2,86-17,14% dari volume total dan fraksi berat masing-masing unsur penyusun ditentukan menggunakan energy dispersive X-ray spectroscopy. Angka kekerasan Brinell, kekuatan tarik maksimum, dan ketahanan aus khas bahan gesek yang difabrikasi berada pada rentang 21,7-43,4 kg/mm2, 0,021-0,036 ton, dan 1,5exp-11-5,2exp-11 m2/N.



Friction materials of bamboo fibers reinforced composites for automotive brakes were made using hot isostatic pressing machine at 190oC for 3 hours. The contents of bamboo fiber and metal powder in the mixing were optimized, each composition of other components was fixed, its effects on mechanical properties and microstructure were investigated. Bamboo fibers were used here as substitutes for asbestos fibers whose number varied between 2.86 to 17.14% of the total volume and weight fraction of each constituent element is determined using energy dispersive X-ray spectroscopy. Brinell hardness number, the maximum tensile strength and specific wear resistance of friction materials fabricated in the ranges of 21.7 to 43.4 kg/mm2, 0.021 to 0.036 tons, and 1.5 exp-11-5, 2exp-11 m2 / N, respectively.

Keywords

bambo fiber; brake material; friction material; composite

Full Text:

PDF

References

Bijwe, J. 1997. Composites as friction materials: recent developments in non-asbestos fiber reinforced friction materials—A review. Polym Comp, 18: 378–96

Da Costa, L.L., Loiola, R.L., and Monteiro, S.N. 2010. Diameter dependence of tensile strength by Weibull analysis: Part I bamboo fiber. Revista Matéria, 15(2): 110-116

Dwivedi, U.K., Ghost, A. and Chan, N. 2009. Role of PVA Modification in Improving the Sliding Wear Behaviour of Bamboo. BioResources, 4(2): 522-528

Jang, H., Ko, K., Kim, S.J., Basch, R.H., and Fash, J.W. 2004. The effect of metal fibers on the friction performance of automotive brake friction materials. Wear, 256: 406–414

Jain, S., Kumar, R. and Jindal, U.C. 1992. Mechanical behaviour of bamboo and bamboo composite. Journal of Materials Science, 27: 4598-4604

Kitazawa, K., Takahama, M. and Ogawa, H. 2004. Possibility of nosing of common Japanese bamboo. Journal of Materials Science, 39: 1473 – 1476

Kumar, S., Choudhary, V. and Kumar, R. 2010. Study on the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix. J Therm Anal Calorim, 102: 751–761

Li, S.H., De Wijn, J.R., De Groot, K., Zeng, Q.Y., Zhou, B.L. 1998. Reformed bamboo/glass fabric/aluminium composite as an ecomaterial. Journal of Materials Science, 33: 2147-2152

Liu, Y., Fan, Z., Ma, H., Tan, Y. and Qiao, J. 2006. Application of nano powdered rubber in friction materials. Wear, 261, 225–229

Kurt, A. & Boz, M. 2005. Wear behaviour of organic asbestos based and bronze based powder metal brake linings. Materials and Design, 26: 717–721

Mohanty, S. & Chugh, Y.P. 2007. Development of fly ash-based automotive brake lining. Tribology International, 40: 1217–1224

Thwe, M.M. & Liao, K. 2003. Environmental effects on bamboo-glass/ polypropylene hybrid composites. Journal of Materials Science, 38: 363–376

Silva, E.C.N., Walters, M.C., and Paulino, G.H. 2006. Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials. J Mater Sci, 41: 6991–7004

Yousif, B.F., Leong, O.B., Ong, L.K. and Jye, W.K. 2009. The Effect of Treatment on Tribo-Performance of CFRP Composites. Recent Patents on Materials Science, 2: 67-74

Zhang, S. & Wang, F. 2007. Comparison of friction and wear performances of brake material dry sliding against two aluminum matrix compo-sites reinforced with different SiC particles. Journal of Materials Processing Technology, 182: 122–127

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License