Stress Drop Analysis on Banda Sea

R. S. Yuliatmoko(1), T. Kurniawan(2), R. A. P. Kambali(3),


(1) Research and Development Center, Meteorology, Climatology and Geophysics Agency
(2) Research and Development Center, Meteorology, Climatology and Geophysics Agency, Indonesia
(3) Research and Development Center, Meteorology, Climatology and Geophysics Agency, Indonesia

Abstract

Stress drop is a fundamental parameter of earthquake source that describes stress before and after an earthquake. The purpose of this study was to determine the tectonic characteristics of the Banda sea region. The research method used is a mathematical analysis and Nelder Mead Simplex nonlinear inversion methods. The results show that the Banda Sea is the area with complex tectonic conditions and large earthquake impacts. The Banda sea earthquake generated a stress drop of between 2 MPa -10 MPa from small to medium, it can be concluded that the rocks in the Banda Sea are relatively harder because the Banda Sea has a complex and varied oceanographic profile. The Banda Sea contains many continental fragments and has very deep ocean basins in the North Banda and Weber Deep, as well as plate rollbacks that form geometry in the shape of a spoon. The strength of rocks in the Banda Sea is also strengthened by the results of gravitational anomalies, there are significant differences in the gravity anomalies around the Banda ocean which indicate high density. This information is very important to know the amount of pressure released shortly after the earthquake which has a very large impact as a disaster mitigation measure.                     

Keywords

stress drop, nelder mead simplex method, rock density, mitigation

Full Text:

PDF

References

Abercrombie, R. E. (2014). Stress drops of repeating earthquakes on the San Andreas fault at Parkfield, Geophys. Res. Lett. 41, 8784–8791, doi: 10.1002/2014GL062079

Allmann, B. P., & Shearer, P. M. (2007). Spatial and tem poral stress drop variations in small earthquakes near Park_eld, California, J. Geophys. Res., 112, B04305, doi:10.1029/2006JB004395.

Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth. 114(B1). B01310. doi: https://doi.org/10.1029/2008JB005821.

Andrews, D. (1986). Objective determination of source parameters and similarity of earthquakes of different size,in Earthquake Source Mechanics, J Geophys, vol.37.

Baltay, A. S., Hanks, T. C., & Abrahamson, N. A. (2019). Earthquake stress drop and Arias intensity. Journal of Geophysical Research: Solid Earth, 124, 3838–3852. doi: https://doi.org/ 10.1029/2018JB016753

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy A Python toolbox for seismology, Seismol. Res. Lett. 81, 530–533.

Bilek, S. L., Lay, T., & Ruff, L. J. (2004). Radiated seismic energy and earthquake source duration variations from teleseismic source time functions for shallow subduction zone thrust earthquakes, J. Geophys. Res., 109, B09308, doi:10.1029/2004JB003039.

Bora, D. K., Baruah, S., Biswas, R., & Gogoi, N. K. (2016). Estimation of source parameters of local earthquakes originated in Shillong Plateau and its Adjoining Region of Northeastern India. Bulletin of the Seismological Society of America. 103(1), 437–446. doi: http://dx.doi.org/10.1785/0120120095.

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquake, J.Geophys. Res., 75, 4997-5009 (1971). Correction: J.Geophys. Res., 76, 5002.

Charlton, T. (2016). Neogene plate tectonic evolution of the Banda Arc. Proceedings, Indonesian Petroleum Association Fortieth Annual Convention & Exhibition, May 2016

Cramer, C. H. (2017). Brune stress parameter estimates for the 2016 Mw 5.8 Pawnee and other Oklahoma earthquakes, Seismol. Res. Lett. 88, no. 4, 1005–1016, doi: 10.1785/0220160224.

Garcia, A. A., Caciagli, M., & Selva, J. (2016). Considering uncertainties in the determination of earthquake source parameters from seismic spectra, Geophys. J. Int. 207, 691–701.

Goebel, T.H.W., Hauksson E., Shearer PM., & Apuero, JP. (2015). Stress drop heterogeneity within tectonically complex regions: a case study of San Gorgonio Pass, Southern California. Geophysical Journal International. 202(1). 514–528. doi: https://doi.org/10.1093/gji/ggv160.

Guochang, L., Sergey, F., & Xiaohong, C. (2011). Time frequency analysis of seismic data using local attributes. Geophysics, 76, no. 6, P23-P34. doi: 10.1190/geo2010-0185.1.

Grandis, H. (2009). Pengantar Pemodelan Inversi Geofisika, Himpunan Ahli Geofisika Indonesia, Jakarta.

Ibrahim, G. (2012). Earthquake Source Properties and Site Response for Indonesia Strong-Motion Network. Master Thesis. Unpublished. Canberra: Australian National University.

Hall, R. & Wilson, M. E. J. (2000). Neogene suture in eastern Indonesia. Journal of Asian Earth Sciences, 18,781-802.

Hamilton, W. (1979). Tectonics of the Indonesian Region, U.S. Geological Survey Professional Paper, 1078.

Hartzell, S., Mendoza, C., & Zeng Y. (2013). Rupture Model of the 2011 Virginia, earthquake from teleseismic and regional waveforms. Geophysical Research Letters. 40(21). 5665-5670. doi: https://doi.org/10.1002/2013GL057880.

Havskov, J. & Ottemoler, L. (2010). Routine Data Processing in Earthquake Seismology (Department of Earth Science). Norway: University of Bergen. Available from: https://link.springer.cm/book/10.1007/978-90-481-8697-6.

Incorporated Research Institutions for Seismology.Wilber 3. Website Available from: https://ds.iris.edu, [accessed January 2, 2020].

Pownall, J. M., Hall, R., Lister, G. S. & Trihatmojo, A. (2018). Geological aspects of Banda Sea ecosystems and how they shape the oceanographical profile. IOP Conf. Series: Earth and Environmental Science 184 (2018) 012005. doi :10.1088/1755-1315/184/1/012005.

Kanamori, H. & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America (1975) 65 (5): 1073-1095.

Kaye, S. J. (1987). The Production of a new Bouguer anomaly map of East Timor, Indonesia. Geophys. J.,89(2),469.

McGarr, A. (2014). Maximum magnitude earthquake, J. Geophys. Res. 119, 1008–1019.

Moraglio A. & Johnson, C. G. (2010). Geometric Generalization of the Nelder-Mead Algorithm. Evolutionary Computation in Combinatorial Optimization (EvoCOP). 6022; 190-201. DOI: https://doi.org/10.1007/978-3-642-12139-5_17.

Pusat Studi Gempa Nasional. (2017). Peta Sumber dan Bahaya Gempabumi Indonesia Tahun 2017. Puslitbang PUPR.

Repo gempa, bmkg Website Available from: http://repogempa.bmkg.go.id/, [accessed January 2, 2020].

Sativa, O. (2013): Estimasi Site Effect Dari Data Accelerogram Borehole Dan Accelerogram Permukaan, Final Project Strata One Geophysical Engineering Study Program, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology.

Scholz, C. H. (2019). The mechanics of earthquakes and faulting. Cambridge University Press.

Trugman, D. T., Dougherty, S. L., Cochran, E. S., & Shearer, P. M. (2017). Source spectral properties of small to moderate earthquakes in southern Kansas, J. Geophys. Res. 122, doi: 10.1002/ 2017JB014649.

United States Geological Survey. Earthquake Glossary. Website Available from: https://earthquake.usgs.gov, [accessed Juli 20, 2019].

Wojciech, D. (2018). Dynamic Stress Drop for Selected Seismic Events at Rudna Copper Mine, Poland. Pure Appl. Geophys. 175, 4165–4181. https://doi.org/10.1007/s00024-018-1926-6.

Yuliatmoko, R. S., Afnimar, & Gunawan, I. (2017). Stress Drop Variation di Sumatra. Jurnal Geofisika. 15(3): 10-16.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License