H.P. Kusumaningrum, W. S. Budi, M. Azam, A. Bawono


Molekul DNA menunjukkan polarisasi yang kuat sehingga memungkinkan baik gerak elektroforesis berdasarkan muatan negatifnya maupun gerak dielektroforesis berdasarkan induksi polarisasi. Perancangan alat menggunakan kombinasi prinsip elektroforesis dan dielektroforesis dilengkapi perangkat lunak untuk mengukur konsentrasinya sangat diperlukan. Utamanya mengingat uji kualitatif DNA berbasis visualisasi pada gel elektroforesis bersifat sangat subyektif dan kurang terukur. Pengukuran konsentrasi DNA menggunakan spektrofotometer UV/VIS sangat tergantung oleh ketersediaannya di laboratorium. Penelitian bertujuan untuk mendesain piranti untuk mengukur konsentrasi DNA berdasarkan visualisasinya pada gel elektroforesis menggunakan perangkat lunak berbasis MatLab. Pengukuran konsentrasi DNA didasarkan visualisasinya pada gel elektroforesis lalu dibandingkan dengan hasil penghitungan spektrofotometer UV/VIS. Hasil penelitian menggunakan piranti tersebut memperlihatkan visualisasi DNA yang lebih optimal. Hasil pengukuran jumlah DNA menggunakan spektrofotometer memiliki kecenderungan yang sama dengan hasil pengukuran menggunakan perangkat lunak berbasis MatLab meskipun terdapat perbedaan nilai kuantitatif.


Molecules of deoxyribo nucleic acid (DNA) show a strong polarization allowing for both motions of the dielectrophoresis induced by polarization and electrophoresis based on its negative charge. Considering high subjective and less quantifiable result of the visualization based qualitative test of DNA on gel electrophoresis, designing the tool using a combination of the principles of electrophoresis and dielectrophoresis completed with a software for optimization of DNA visualization and to measure the concentration of small and largesized DNA fragment is very needed. Accuracy of measurement of DNA concentration using a spectrophotometer UV /VIS is depend on its availability in the laboratory. The aim of this study was to design device for optimization of DNA visualization and measuring the concentration in the gel electrophoresis using MatLab- based software. Experiment using this software measured the concentration of DNA based on its visualization and compared it with calculation obtained from spectrophotometer UV/VIS. The research results showed that the amount of DNA analysed using a spectrophotometer tend to similar with the measurement results using the MatLab-based software although there was differences in quantitative values.


DNA concentration; visualization; electrophoresis

Full Text:



Alberts B, D.Bray, J Lewis , M. Ralf, K. Roberts, and JD Watson. (1991). Molecular Biology of The Cell. Garland Publ. London.

Ausubel, F., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl. (1995). Short Protocols in Molecular Biology. A Compedium of Methods from Current Protocols in Molecular Biology. 3nd Ed . Wiley & Sons. Inc. USA. 2-10.

Bakewell D.J. and H. Morgan. (2006). Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes. IEEE Trans Nanobioscience 5(2) : 139 146

Castellarnau M., Errachid A., Madrid C., Jurez A.and J. Samitier. (2006).

Dielectrophoresis as a Tool to Characterize and Differentiate Isogenic Mutants of Escherichia coli. Biophysical Jour., 91(10) : 3937-3945

Chou, C, Tegenfeldt J.O., Bakajin O., Chan S.S.,. Cox E.C, Darnton N., Duke T. and R.H. Austin. (2002). Electrodeless Dielectrophoresis of Single- and Double-Stranded DNA. Abstract. Biophysical Jour. 83 (4) : 2170-2179

Day, R. A. dan A. L. Underwood. (2002). Analisa Kimia Kuantitatif. Erlangga, Jakarta.

Gemen S. and D. Gemen. (1984). Stochastic Relaxation, Gibbs distributions and Bayesian Restoration. IEEE Transactions of Pattern Analysis and Machine Intelligence, 6 721

Goldfarb D and Yin W (2005). Second-Order Cone Programing Methods For Total Variation Based Image Restoration. AMS.

Haario, H., Laine, M., Lehtinen, M., Saksman, E. and Tamminen, J. (2004). Markov chain Monte Carlo methods for high dimensional inversion in remote sensing. J. R. Statist. Soc. B 66(3), 591-608

Hoeb M., Rdler J.O., Klein S., StutzmannM. andM.S. Brandt. (2007). Light-Induced Dielectrophoretic Manipulation of DNA. Biophysical Jour., 93(3): 1032-1038

Kua, C.H, Lam Y.C., Yang , C. and K. Youcef-Toumi. (2004). Review of bio-particle manipulation using dielectrophoresis. Nanyang Tech Univ, Singapore.; Massachusetts Inst. of Tech., Cambridge, Massachusetts.p. 1-7

Lapizco-Encinas, B.H., Simmons, B.A, Cummings, E.B. and Y. Fintschenko. (2004). Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25 : 16951704

Miles R., Wang A., Bettencourt K., Nasarabadi S., Belgrader P., Davidson J.C. and R.P. Mariella Jr. (1989). Manipulation of DNA for Use in Microfluidic Devices. UCRL-JC-132459 Preprint. Lawrence Livermore. Nat. Lab.

Murthy K. P. N. (2005). Bayesian Restoration of Digital Images Employing Markov Chain Monte Carlo, eprint arXiv:cs/0504037

Regtmeier J., Duong T.T., Eichhorn R., Anselmetti R, and A. Ros. (2007). Dielectrophoretic Manipulation of DNA: Separation and Polarizability. Anal. Chem., 79(10) : 3925 -3932

Regtmeier J., Eichhorn R., Bogunovic L., A. Ros and Anselmetti D. (2010). Dielectrophoretic Trapping and Polarizability of DNA : The Roll of Spatial Conformation. Anal. Chem., 82:7141-7149

Sambrook, J., Fritsch, E. R. & T. Maniatis.(1989). Molecular Cloning A Laboratory Manual. Second Edition. Cold Spring Harbor Laboratory Press, USA.

Tanaka K and N Yoshiike. (2003). Statistical-Mechanical Approach to Probabilistic Image Processing. Workshop on Statistical Mechanical Approach to Probabilistic Information Processing.



  • There are currently no refbacks.

Creative Commons License
Jurnal Pendidikan Fisika Indonesia is licensed under a Creative Commons Attribution 4.0 International Licensep-ISSN 1693-1246 e-ISSN 2355-3812