G. R. F. Suwandi, S. N. Khotimah, F. Haryanto


Nuclear Magnetic Resonance (NMR) has been used as a research tool in many fields. In this study, the magnetic properties, especially anti-ferromagnetic properties of FeF3 materials were investigated. Zero-field custom-built NMR method was used to investigate the anti-ferromagnetic properties in the materials. Experiments have been carried out by varying the sample temperatures from 8 K to 220 K. Ordinary spin echo pulse sequence 90?RF?180?RF were used. Using Fast Fourier Transform, the signals in NMR spectrum were analyzed and the peak showed the resonance frequency. The result showed that resonance frequencies decrease with increasing in temperature. The frequency of the spectrum was around 85.41 MHz in the zero-temperature limit, and this corresponds with Fe hyperfine field at zero-temperature limit was 2.14 T. The temperature dependence of the local magnetization does not fit T2 Blochs Law very well. Instead, it fits the exponential form having an energy gap in the dispersion relation of the spin wave. It is obtained from the result that FeF3 is antiferromagnetic materials with energy gap of 11.466 meV and anisotropy energy of 1.045 meV.

Nuclear Magnetic Resonance (NMR) telah banyak digunakan sebagai research tool pada berbagai bidang kajian di fisika. Pada studi ini, akan dilakukan eksperimen untuk menguji sifat magnetik, khususnya antiferromagnetik pada material FeF3. Telah dilakukan eksperimen dengan memvariasikan temperatur pada sampel dari 8 K hingga 220 K. Pulse sequence yang digunakan adalah 90?RF?180?RF. Dengan memanfaatkan Fast Fourier Transform, sinyal echo ini dapat dianalisis dalam bentuk spektrum NMR dengan puncak spektrum menunjukkan frekuensi resonansinya. Diperoleh bahwa frekuensi resonansi akan menurun seiring dengan kenaikan temperatur. Posisi frekuensi pada temperatur 0 K adalah sebesar 85,41 MHz, hal ini memperlihatkan bahwa medan hyperfine dari Fe sebesar 2,14 T pada temperatur 0 K. Kurva antara frekuensi resonansi dengan temperatur menunjukkan bahwa magnetisasi tidak tepat sebanding dengan hukum Bloch T2 namun lebih cocok dengan bentuk persamaan eksponensial yang berkaitan dengan suatu gap energi yang berasal dari dispersi spin wave. Hal ini menguatkan bahwa bahan FeF3 merupakan bahan yang bersifat antiferromagnetik, namun bukan antiferromagnetik sederhana. Berdasarkan fitting, diperoleh gap energi sebesar 11,466 meV dan energi anisotropi sebesar 1,045 meV.


Anti-ferromagnetic, FeF3, FID echo, hyperfine field, NMR, zero-field

Full Text:



Chlan, V., Stepankova, H., Rezn?cek, R., & Novak, P. (2011). Anisotropy of hyperfine interactions as a tool for interpretation of NMR spectra in magnetic materials. Solid State Nuclear Magnetic Resonance, 40, 2730.

Christman, J. R. (1988). Fundamental of Solid State Physics. USA : John Wiley & Sons.

Coey, J. M. D. (2009). Magnetism and Magnetic Material. New York : Cambridge University Press.

Ferey, G., Varret, F., & Coey, J. M. D. (1979). Amorphous FeF3 : a non-crystalline magnet with antiferromagnetic interactions. Journal of Physics C: Solid State Physics, 12(13), 531-538.

Gadian, D.G. (1995). NMR and its application to living system. New York : Oxford University Press Inc.

Grover, F.W. (1973). Inductance Calculations. New York : Dover Publication Inc.

Hepworth, M. A., Jack, K. H., Peacock, R. D., & Westland, G. J. (1957). The crystal structures of the trifluorides of iron, cobalt, ruthenium, rhodium, palladium and iridium. Acta Crystallographica, 10, 63-69.

Jacobsen, N. E. (2007). NMR Spectroscopy Explained : Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology. New Jersey : John Wiley & Sons.

Jo, E., Kim, C., & Lee, S.C. (2011). 55Mn nuclear magnetic resonance for antiferromagnetic Mn2O3. New Journal of Physics, 13 , 013-018.

Kittel, C. (1979). Introduction to Solid State Physics 5th ed. New Delhi : Wilwy Eastern Reprint.

Li, R. F., Wu, S. Q., Yang, Y., & Zhu, Z. Z. (2010). Structural and Electronic Properties of Li-Ion Battery Cathode Material FeF3. Journal of Physical Chemistry C , 114, 1681316817.

Paulet, L. (2013). Contrast Agent in MRI, [Portable Document File]. Retrieved from

Poole Jr., C.J. (2004) Encyclopedic Dictionary of Condensed Matter Physics Vol 1 and 2. San Diego : Elsevier Inc.

Riedi, P.C. (1973). Temperature Dependence of the Hyperfine Field and Hyperfine Coupling Constant of Iron. Physical Review B, 8, 5243-5246.

Rosenthal , D. (1964). Introduction to Properties of Materials. New Jersey : D.Van Nostrand Company Inc.

Scholz, G., & Stosser, R. (1999). Molecular structures, vibrational frequencies and isotropic hyperfine coupling constants of FeF3 and MnF2: an ab initio molecular orbital study. Journal of Molecular Structure : THEOCHEM, 488, 195206.

Shane, J.R. & Kestigian, M. (1968). Antiferromagnetic Resonance in Twinned Crystals of FeF3. Journal of Applied Physics, 39, 1027-1028.

Sigma Aldrich. (2013). Product Spesification of FeF3. Retrieved from

Sleator, T. (2008). Pulsed Nuclear Magnetic Resonance and Spin Echo. New York : New York University.

Strijkers, G.J., Mulder, W.J.M., Tilborg, G.A.F.v., & Nicolay, K. (2007). MRI contrast agents: current status and future perspectives. Anti-Cancer Agent in Medicinal Chemistry, 7(3), 291-305.

Suwandi, Galih R.F. (2014). Penggunaan Zero-field Nuclear Magnetic Resonance (NMR) untuk Studi Sifat Antiferromagnetik Material FeF3. (Unpublished Master Thesis). SPs ITB, Bandung.

Tamine, M. (2002). Magnetic frustration in cubic antiferromagnet studied by means of the constraint function: Application to FeF3. Computational Materials Science, 25, 339343.

Thayer, A.M., & Pines, A. (1987). Zero-field NMR. Account of Chemical Research, 20 (2), 4753.



  • There are currently no refbacks.

Creative Commons License
Jurnal Pendidikan Fisika Indonesia is licensed under a Creative Commons Attribution 4.0 International Licensep-ISSN 1693-1246 e-ISSN 2355-3812