THIN FILM-BASED SENSOR FOR MOTOR VEHICLE EXHAUST GAS, NH3, AND CO DETECTION

S. Sujarwata, P. Marwoto, L. Handayani

Abstract


A copper phthalocyanine (CuPc) thinfilm based gas sensorwith FET structure and channel length 100?mhas been prepared by VE method and lithography technique to detect NH3, motor cycle exhaust gases andCO. CuPc material layer was deposited on SiO2by the vacuum evaporator (VE) method at room temperature and pressureof 8 x10-4 Pa. The stages of manufacturing gas sensor were Si/SiO2 substrate blenching with ethanol in an ultrasonic cleaner, source, and drain electrodes deposition on the substrate by using a vacuum evaporator, thin film deposition between the source/drain and gate deposition. The sensor response times to NH3, motorcycle exhaust gases and CO were 75 s, 135 s, and 150, respectively. The recovery times were 90 s, 150 s and 225, respectively. It is concluded that the CuPc thin film-based gas sensor with FET structure is the best sensor to detect the NH3 gas.

Sensor gas berbasis film tipis copper phthalocyanine (CuPc) berstruktur FET dengan panjang channel 100 ?m telah dibuatdengan metode VE dan teknik lithography untuk mendeteksi NH3 gas buang kendaraan bermotor dan CO. Lapisan bahan CuPc dideposisikan pada permukaan silikon dioksida (SiO2) dengan metode vacuum evaporator (VE) pada temperatur ruang dengan tekanan 8 x10-4 Pa. Tahapan pembuatan sensor gas adalah pencucian substrat Si/SiO2 dengan etanol dalam ultrasonic cleaner, deposisi elektroda source dan drain di atas substrat dengan metode vacuum evaporator, deposisi film tipis diantara source/drain dan deposisi gate. Waktu tanggap sensor terhadap NH3, gas buang kendaraan bermotor dan CO berturut-turut adalah 75 s, 135 s,dan 150 s. Waktu pemulihan berturut-turut adalah 90 s, 150 s,dan 225 s. Disimpulkan bahwa sensor gas berstruktur FET berbasis film tipis CuPc merupakan sensor paling baik untuk mendeteksi adanya gas NH3.


Keywords


OFET; thin film; response time; recovery time; lithograph

Full Text:

PDF

References


Abe, H., Yoshimura, T., Kanaya, S., Takahashi, Y., Miyashita, Y., & Sasaki, S. (1987). Automated Odor-sensing System Based on Plural Semiconductor Gas Sensors and Computerized Pattern Recognition Techniques, Anal. Chim.Acta.; 194, 1-9.

Brunet, J., Talazac, L., Battut,V., Pauly, A Blanc, J.P., Germain, J.P., Pellier, S., & Soulier, C. ( 2001). Evaluation of atmospheric pollution by two semiconductor gas sensors, Thin Solid Films 391(2), 308-313.

Brunet, J., Paulya, A., Mazet, L., Germain, J.P., Bouvet, M., & Malezieux, B. (2005). Improvement in real time detection and selectivity of phthalocyanine gas sensors dedicated to oxidizing pollutants evaluation, Thin Solid Films 490(1), 28-35.

Chakane, S.D., Datir, A.M., Ghole, V.S., (2012). Nitrogen Dioxide Sensing Characteristics of Spin Coated Unsubstituted Copper Phthalocyanine Films, IMCS 2012-The 14th International Meeting on Chemical Sensors.

Christopel, D. P. (2009), Pembuatandankarakterisasi sensor gas ammonia berbasis polianilin. Skripsi. Bogor: FMIPA, Institut Pertanian Bogor.

Joseph, C. M. & Menon, C. S. (2002). Device preparation and characteristics of CuPc transistor.Materials Letters, 52(3), 220-222.

Lee, Y.L., Sheu, C.Y., & Hsiao, R. H. (2004). Gas sensing characteristics of copper phthalocyanine films: effects of film thickness and sensing temperature. Sensors and Actuators B, 99(2), 281287.

Liu, C. J., Hsieh, J. C., & Ju, Y. H. (1996). Response characteristics of lead phthalocyanine gas sensor: effect of operating temperature and postdeposition annealing. Journal of Vacuum Science & Technology A, 14(3), 753-756.

Maggioni, G., Quaranta, A., Carturan, S., Patelli, A., Tonezzer, M., Ceccato, R., & Della Mea, G. (2005). Deposition of copper phthalocyanine films by glow-discharge-induced sublimation. Chemistry of materials, 17(7), 1895-1904.

Mirwa, A., Friedrich, M, & Hofman, A. (1995). Sensors and Actuator B24 -25,596

Min, Y. (2003). Properties and Sensor Performance of Zinc Oxide Thin Film, Massachusetts Institute of Technology.

Moseley, P. T. (1992). Materials selection for semiconductor gas sensors. Sensors and Actuators B: Chemical, 6(1-3), 149-156.

Muliadi, L., O. (2006). Pembuatan sensor fiber optik dengan cladding polianilin untuk mengukur gas amonia. Skripsi. Bogor: Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor.

Roto, Triyana, K. & R. Sudirman. (2000) Pengaruh konsentrasi pembawa muatan pada laju tanggap polianilin sebagai dasar sensor gas, Laporan penelitian Fundamental Nomor: 16/P2IPD/DPPM/VI/1999.

Toshihro, M., Kawaguchi, S., Ishii, M., & Minami, T. (2003). High sensitivity chlorine gas sensors using Cuphthalocyanine thin films. Thin Solid Films, 425(1), 255-259.

Zhou, R., Josse, F., Gpel, W., ztrk, Z. Z., & Bekaro?lu, . (1996). Phthalocyanines as sensitive materials for chemical sensors. Applied Organometallic Chemistry, 10(8), 557-577.




DOI: https://doi.org/10.15294/jpfi.v12i2.4621

Refbacks

  • There are currently no refbacks.




Creative Commons License
Jurnal Pendidikan Fisika Indonesia is licensed under a Creative Commons Attribution 4.0 International Licensep-ISSN 1693-1246 e-ISSN 2355-3812