RADIATION SAFETY ANALYSIS OF NEUTRON COLIMATOR BASED ON NICKEL MATERIAL FOR PIERCING RADIAL BEAMPORT UTILIZATION OF KARTINI RESEARCH REACTOR

W. Widarto(1), T. Trikasjono(2), F. Akbar(3),


(1) Center for Accelerator Science and Technology-National Nuclear Energy Agency of Indonesia
(2) Nuclear Technology School of Higher Learning-National Nuclear Energy Agency of Indonesia
(3) Nuclear Technology School of Higher Learning-National Nuclear Energy Agency of Indonesia

Abstract

Radiation safety analysis of nickel material neutron colimator (as requirement) for pearcing radial beamport utilization of Kartini research reactor has been done before the neutron colimator instaled. The neutron collimator made of nickel material with cyllindrical geometry which is 156 cm length. The Inside and outside diameter are 16 cm and 19 cm respectively with mean cyllindrical thickness is 1.5 cm. Irradiation process to the neutron collimator begin when the reactor beeing operated for 6 (six) hours per day and assumed optimum at 100 kW power level. Results of the analysis showed that gamma dose rate which was generated by collimator at a distance of 50 cm from the end of the collimator is 1.5328e-03 mr/hours. The dose rate is still below the dose limit value which was required by Nuclear Energy Regulatory Agency (BAPETEN) is 1 mr/hours. It can be concluded that utilization neutron colimator of nickel material which installed at the radial pierching beamport of Kartini Reactor is safelly.

Telah dilakukan kajian analisis keselamatan paparan radiasi terhadap kolimator neutron (sebagai persyaratan) sebelum dipasang pada beamport tembus radial reaktor kartini. Kolimator neutron terbuat dari bahan nikel berbentuk silinder panjang 156 cm dengan diameter dalam 16 cm dan diameter luar 19 cm sehingga tebal silinder 1.5 cm. Proses iradiasi terhadap kolimator neutron terjadi pada saat reaktor dioperasikan pada suatu daya dan diasumsikan optimal pada daya 100 kw selama 6 jam dalam satu hari. Hasil analisis menunjukan laju dosis gamma yang dihasilkan kolimator pada jarak 50 cm dari ujung kolimator sebesar 1.5328e-03 mr/jam. Laju dosis tersebut masih dibawah nilai batas dosis yang ditetapkan oleh bapeten sebesar 1 mr/jam, sehingga penggunaan kolimator tersebut dalam batas aman

Keywords

dose rate; neutron collimator; pierching radial beamport; radiation

Full Text:

PDF

References

Akbar, F. (2015). Analisis Keselamatan Radiasi Kolimator Bahan Nikel Pada Beamport Tembus Radial Reaktor Kartini. Tugas Akhir Jurusan Teknik Fisika. Sekolah Tinggi Teknologi Nuklir.

Arrozaqi, M. I. M., Widiharto, A., & Sardjono, Y. (2013). Perancangan Kolimator Di Beamport Tembus Reaktor Kartini Untuk Boron Neutron Capture Therapy. Doctoral Dissertation. Yogyakarta: Fakultas Teknik Universitas Gadjah Mada

Awaludin, R. (2009). Pembuatan Nanopartikel Emas Radioaktif dengan Aktivasi Neutron. Kawasan Puspiptek Serpong-Tangerang: PRR-BATAN

BAPETEN. (2013). Peraturan Kepala Badan Pengawas Tenaga Nuklir Nomor 4 Tahun 2013 tentang Proteksi dan Keselamatan Radiasi Dalam Pemanfataan Tenaga Nuklir. Jakarta: Badan Pengawas Tenaga Nuklir.

Faghihi, F., & Khalili, S. (2013). Beam Shaping Assembly of a D-T Neutron Source for BNCT and its Dosimetry Simulation in Deeply-seated Tumor. Radiation Physics and Chemistry, 89, 1-13.

Gerhard, E. (1976). Neutron Activation Tables. Weinheim Nem York: Verlag Chemie

Karmanto, E. E. (2016). Sistem Manajemen Pengoperasian, Perawatan, Modifikasi, dan Utilisasi Reaktor Kartini. Yogyakarta: PSTA-BATAN

Khoirunisa & Widarto. (2015). Analisis Kandungan Elements Pada Bahan Kolimator Neutron Sebelum Dan Setelah Manufaktur Menggunakan Metode AAN. Yogyakarta: STTN-BATAN.

Moss, R. L. (2014). Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Applied Radiation and Isotopes, 88, 2-11.

Mujiyono., Mukhamad, A. F. H., & Leman, A. (2014). Manufaktur Collimator BNCT Berbahan Nikel dengan Metode Gravity Casting dan Analisis Potensi Centrifugal Casting Sebagai Metode Alternatif. Yogyakarta: Jogja Bangkit Publisher.

Novitasari., I. S. (2015). Analisis Fluks Neutron Pada Beamport Tembus Radial Reaktor Kartini Untuk Fasilitas Uji in Vivo Dan In Vitro Boron Neutron Capture Therapy (BNCT). Skripsi. Yogyakarta: Jurusan FMIPA Universitas Negeri Yogyakarta.

Rasouli, F. S., Masoudi, S. F., & Kasesaz, Y. (2012). Design of a model for BSA to meet free beam parameters for BNCT based on multiplier system for D–T neutron source. Annals of Nuclear Energy, 39(1), 18-25.

Savolainen, S., Kortesniemi, M., Timonen, M., Reijonen, V., Kuusela, L., Uusi-Simola, J., Salli, E., Koivunoro, H., Seppala, T., Lonrodh, N., Valimaki, N., Hivonen, H., Kutiluoto, V., Seren, T., Kuronen, A., Heikkinen, S., Kosunen, A., and Auterinen, I. (2013). Physica Medica. Europian Journal of Medical Physics, 29, 233-248.

Sardjono, Y., Widarto, Pudjorahardjo, J.S., Triatmoko, I.M., Susilowati, A.D. (2014). Status Saat Ini Pengembangan Teknologi Dan Aplikasi Boron Neutron Capture Cancer Therapy Dengan Compact Neutron Generator, Buku Status Boron Neutron capture Therapy di Indonesia. Yogyakarta: Jogja Bangkit Publisher.

Stabin, M. G. (2007). Radiation Protection and Dosimetry. New York: Springer.

Sunny, C. S., & Subbaiah, K. V. (2004). Shield structure optimisation studies for the west beam port of the KAMINI reactor. Annals of Nuclear Energy, 31(12), 1403-1413.

Suparman, L. Y. (2011). Penentuan Karakteristik Distribusi Fluks Neutron Thermal Fasilitas Iradiasi Lazy Susan (LS) Arah Horizontal Reaktor Kartin. Skripsi. Yogyakarta: Jurusan FMIPA Universitas Negeri Yogyakarta.

Tanaka, H., Y. Sakurai, M. Suzuki, S. Masunaga, T. Mitsumoto, Y. Kinashi, M. Narabayashi, Y. Nakagawa, T. Watanabe, N. Fujimoto, A. Maruhashi, N. Kondo, K. Ono. (2014). Evaluation of thermal neutron irradiation field using a cyclotron-based neutron source for alpha autoradiography, Applied Radiation and Isotopes, 88, 153–156

Trikasjono, T. (2008). Studi Penerimaan Dosis Eksterna Pada Pekerja Radiasi di Kawasan Batan Yogyakarta, Prosiding Seminar Nasional IV SDM Teknologi Nuklir, Yogyakarta.

Umbara, R. H. (2011). Pedoman Keselamatan dan Proteksi Radiasi Kawasan Nuklir Serpong (Revisi 1). Tangerang Selatan: PUSPIPTEK Serpong.

Yasmeen, R., & Mahmood, M. S. (2016). Design study of neutron beam facility around TRIGA research reactor core. Annals of Nuclear Energy, 91, 203-205.

Wahyono, P. I. (2012). Laporan Analisis Keselamatan (Rev.7). Yogyakarta: PTAPB-BATAN.

WHO. (2013). Health Risk Assessment: from the nuclear accident after the 2011 Great East Japan Earthquake and Tsunami. Switzerland: WHO Press.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License