Strategi Pemecahan Masalah Matematika Siswa SMP Ditinjau Dari Tingkat Berpikir Geometri Van Hiele

Diah Ayuningrum

Abstract

Penelitian ini bertujuan untuk mendeskripsikan strategi pemecahan masalah matematika siswa SMP ditinjau dari tingkat berpikir geometri Van Hiele yaitu visualisasi, analisis dan deduksi informal. Penelitian ini merupakan penelitian kualitatif yang menghasilkan data deskriptif. Subjek penelitian ini terdiri dari tiga siswa kelas VIII-F SMPN 1 Waru, Sidoarjo. Penelitian ini dimulai dengan menentukan subjek penelitian dengan menggunakan tes tingkat berpikir geometri Van Hiele, kemudian dilanjutkan dengan pemberian tugas pemecahan masalah dan wawancara. Pengecekan keabsahan data menggunakan triangulasi waktu. Strategi pemecahan masalah siswa akan dianalisis berdasarkan tahapan pemecahan masalah Krulik dan Rudnick, yang terdiri dari (1) membaca dan berpikir, (2) mengeksplorasi dan merencanakan, (3) memilih suatu strategi, (4) menemukan jawaban, dan (5) meninjau dan mendiskusikan. Hasil penelitian menunjukkan bahwa 1) siswa visualisasi dalam memecahkan masalah matematika menggunakan strategi membuat gambar, berpikir logis, menulis persamaan atau kalimat terbuka, dan membuat daftar yang teratur, subjek visualisasi belum memahami bahwa persegi merupakan persegipanjang. 2) Siswa analisis memecahkan masalah matematika menggunakan strategi berpikir logis, menguji dan menerka serta membuat gambar, subjek analisis belum memahami bahwa persegi merupakan persegi panjang. 3) Siswa deduksi informal dalam memecahkan masalah matematika menggunakan strategi membuat gambar, berpikir logis, menulis persamaan atau kalimat terbuka serta menerka dan menguji, subjek deduksi informal telah memahami bahwa persegi merupakan persegipanjang.

This study aimed to describe the mathematical problem-solving strategy of junior high school students based on Van Hiele levels of geometry thinking, namely visualization, analysis and informal deduction. This study was a qualitative research that produced descriptive data. Subjects of this study consisted of three students of class VIII-F SMPN 1 Waru, Sidoarjo. The study began by determining the subject of research by using Van Hieles geometry test, and then given problem solving task and interviews. For checking the validity of the data used a triangulation of time. Student problem solving strategies will be analyzed based on the stages of Krulik and Rudnicks problem solving, which consists of (1) to read and think, (2) explore and plan, (3) selecting a strategy, (4) find the answers, and (5) review and discuss. The results showed that 1) the strategy of visualization student in solving mathematical problems was drew a picture, logical reasoning, wrote an equation or an open sentence, and made organized list, the visualization subject did not understood that a square was a rectangle. 2) The analysis student in solving mathematical problems was used logical reasoning strategies, guessed and checked, and drew a picture, the analysis subject did not understood that a square was a rectangle. 3) The strategy of informal deduction student in solving mathematical problem was drew a picture, logical reasoning, wrote an equation or an open sentence and guessed and checked, the subject of informal deductions had understood that a square was a rectangle.

Keywords

Strategi Pemecahan Masalah; Pemecahan Masalah; Tingkat Berpikir Geometri Van Hiele

References

Abdussakir, A. (2012). Pembelajaran Geometri Sesuai Teori Van Hiele. MADRASAH, 2(1).

Aydo?du, M. Z., & Ke?an, C. (2014). A Research On Geometry Problem Solving Strategies Used By Elementary Mathematics Teacher Candidates. Engineering Sciences & Technologies/Nauki Inzynierskie i Technologie, 4(1).

Branca, N. A. (1980). Problem Solving as a Goal, Process, and Basic Skill. Problem Solving in School Mathematics. Editor: Krulik, S. and Reys, R.E. Reston: National Council of Teachers of Mathematics.

Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for research in mathematics education, 17(1), 31-48.

Fuys, D., Geddes, D., & Tischler, R. (1988). The van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education. Monograph, 3, i-196.

Krulik, S., & Rudnick, J. A. (1995). The New Sourcebook for Teaching Reasoning and Problem Solving in Elementary School. Needham Heights: Allyn & Bacon.

Polya, G. (1973). How to Solve it.NEW JERSEY: Princeton University Press.

Shadiq, F. (2004). Pemecahan Masalah, Penalaran dan Komunikasi. Yogyakarta: PPPG Matematika

Siew, N. M. (2013). Facilitating Studentsgeometric Thinking Through Van Hieles Phase-Based Learning Using Tangram. Journal of Social Sciences, 9(3), 101-111.

Walle, J. A. (1990). Geometric Thinking and Geometric Concepts. In Elementary and Middle School Mathematics: Teaching Developmentally, 4th ed. Boston: Allyn and Bacon.

Wardhani, S., & Rumiati. (2011). Instrumen Penilaian Hasil Belajar Matematika SMP: Belajar dari PISA dan TIMSS. Yogyakarta: PPPPTK.

Usiskin, Z. (1982). Van Hiele levels of achievement in secondary school geometry. Final Report of the Cognitive Development and Achievement in Secondary School Geometry Project. Chicago: University of Chicago.

Yazgan, Y. (2015). Sixth graders and non-routine problems: Which strategies are decisive for success?. Journal of Elementary, 10(13), 1807-1816.

Refbacks

  • There are currently no refbacks.