Mental Representation Level of Junior High School Students in Cell Biology Concept Based on Gender
Abstract
This study aims to determine the level of mental representation of seventh-grade junior high school students in cell concepts. The research method used was the explanatory sequential mix method with 60 research subjects. The instruments used in this research were the Mental Diagnostic Test (MDT), which consists of a reasoned true and false test, a symbolic test, and an imaging test. Based on the results obtained from the answers to the MDT instrument, it can be seen that the levels of mental representations are categorized into Initial mental representation, Intermediate mental representation 1, Intermediate mental representation 2, Consensus representation, and Target representation. The results show that on the MDT instrument, the average student is included in the intuition and experience mental model. The level of the mental representations of male students is higher than that of female students. The mental representation of the initial level, intermediate 1, and the target in male and female students have the same level; the difference occurs at the intermediate level 2 and consensus. Male students (30%) have higher intermediate level 2 than female students (20%). Furthermore, there are 10% male students and no female students at the consensus level. This research concludes that the information level profile of mental representation is identified as having the type of intuition and experience.
Keywords
Full Text:
PDFReferences
Agustina, S. K., Rahman, T., & Hamdiyati, Y. (2020). Profil model mental siswa sekolah menengah atas tentang konsep sel. Assimilation: Indonesian Journal of Biology Education, 3(1), 39-45.
Alfred, K. L., Connolly, A. C., Cetron, J. S., & Kraemer, D. J. (2020). Mental models use common neural spatial structures for spatial and abstract content. Communications biology, 3(1), 17.
Amalia, F. R., Ibnu, S., Widarti, H. R., & Wuni, H. (2018). Students’ Mental Models of Acid and Base Concepts are Taught Using the Cognitive Apprenticeship Learning Model. Jurnal Pendidikan IPA Indonesia, 7(2), 187-192.
Anagnostopoulou, K., Hatzinikita, V., & Christidou, V. (2015). Comparing international and national science assessment: what we learn about the use of visual representations. Educational journal of the university of Patras UNESCO chair.
Anderson, T. R., Schönborn, K. J., du Plessis, L., Gupthar, A. S., & Hull, T. L. (2013). Identifying and developing students’ ability to reason with concepts and representations in biology. Multiple representations in biological education, 19-38.
Arikunto, S. (2010). Prosedur penelitian suatu pendekatan praktek. Jakarta: Rineka Cipta.
Bilir, V., & Karaçam, S. (2021). Evaluation of mental models of prospective science teachers on chemical reactions. Journal of Pedagogical Research, 5(1), 258-274.
Campbell, N. A. (2017). Biology. Eleventh edition. California: Pearson Education Inc.
Cheng, M. M. (2018). Students’ visualisation of chemical reactions–insights into the particle model and the atomic model. Chemistry Education Research and Practice, 19(1), 227-239.
Cheng, M. M., & Gilbert, J. K. (2015). Students’ Visualization of Diagrams Representing the Human Circulatory System: The use of spatial isomorphism and representational conventions. International Journal of Science Education, 37(1), 136-161.
Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research. Sage publications.
Elfada, V. S., Chandra, E., & Mulyani, A. (2015). Analisis kualitas representasi visual buku biologi SMA kelas XI kurikulum 2013 pada materi sel. Scientiae Educatia: Jurnal Pendidikan Sains, 4(2).
Eitel, A., & Scheiter, K. (2015). Picture or text first? Explaining sequence effects when learning with pictures and text. Educational psychology review, 27, 153-180.
Fatiha, M., Rahmat, A., & Solihat, R. (2017, September). Profile of High School Students’ Propositional Network Representation when Interpreting Convention Diagrams. In Journal of Physics: Conference Series (Vol. 895, No. 1, p. 012131). IOP Publishing.
Fitriani, Y., Jalmo, T., & Yolida, B. (2015). Hubungan Antara Gender Dengan Kemampuan Memecahkan Masalah. Jurnal Bioterdidik: Wahana Ekspresi Ilmiah, 3(5).
Frank, C., Land, W. M., & Schack, T. (2016). Perceptual-cognitive changes during motor learning: The influence of mental and physical practice on mental representation, gaze behavior, and performance of a complex action. Frontiers in Psychology, 6, 1–14.
Gentner, D., & Stevens, A. L. (Eds.). (2014). Mental Models. Psychology Press
Hamdiyati, Y., Sudargo, F., Redjeki, S., & Fitriani, A. (2017). Biology students’ initial mental model about microorganisms. In Journal of Physics: Conference Series (Vol. 812, No. 1, p. 012027). IOP Publishing.
Hamdiyati, Y., Sudargo, F., Fitriani, A., & Rachmatullah, A. (2018). Changes in perspective biology teachers’ mental model of virus through drawing-writing test: An application of mental model-based microbiology course. Jurnal Pendidikan IPA Indonesia, 7(3), 302-311.
Hamdiyati, Y., Rahman, T., & Sulaeman, S. A. (2022). Analysis of high school student’s mental model on fungi: Representation of students’ conceptions. Biosfer: Jurnal Pendidikan Biologi, 15(2), 344-354.
Hamdiyati, Y., Soesilawaty, S. A., & Habibah, S. N. (2022). Analysis of High School Student’s Mental Model on Virus: Representation of Students’ Conceptions. Jurnal Peneli.tian Pendidikan IPA, 8(4), 1790-1797.
Hamid, R. (2016). Model mental siswa sekolah dasar tentang listrik statis. Jurnal Pengajaran MIPA, 21(1), 24-29.
Hansen, J., & Richland, L. E. (2020). Teaching and learning science through multiple representations: Intuitions and executive functions. CBE—Life Sciences Education, 19(4), ar61.
Hasanti, M. A., & Zulyusri, Z. (2022). Meta-Analisis Miskonsepsi Siswa Mata Pelajaran IPA Materi Biologi Tingkat SMP. PENDIPA Journal of Science Education, 6(1), 263-268.
Hegarty, M., Stieff, M., & Dixon, B. L. (2013). Cognitive Change in Mental Models with Experience in the Domain of Organic Chemistry. Journal of Cognitive Psychology, 25(2), 220-228
Herrmann-Abell, C. F., Koppal, M., & Roseman, J. E. (2016). Toward high school biology: Helping middle school students understand chemical reactions and conservation of mass in nonliving and living systems. CBE—Life Sciences Education, 15(4), ar74.
Ifatrizah, I. (2022). Analisis Kesulitan Belajar Siswa Kelas XII IPA SMA Negeri 9 Mandau Duri Pada Materi Reproduksi Sel Tahun Ajaran 2021/2022 (Doctoral dissertation, Universitas Islam Riau).
Jackson, D. O. (2016). Working memory and second language acquisition: Theory and findings. The Journal of Kanda University of International Studies, 28, 21–47.
Jalmo, T., & Suwandi, T. (2018). Biology Education Students’ Mental Models Of Genetic Concepts. Journal of Baltic Science Education, 17(3), 474-485.
Johnson-Laird, P. N. (2013). Mental models and cognitive change. Journal of Cognitive Psychology, 25(2), 131-138
Juanengsih, J. (2015). Profil Penggunaan Representasi Eksternal dalam Perkuliahan Biologi Sel serta kemampuan Metafora dan Analogi Mahasiswa. Proseding Seminar Nasional Biologi, Lingkungan dan Pembelajaran. Pendidikan Biologi FITK UIN Syarif Hidayatullah, 77-81.
Juanengsih, N., Rahmat, A., Wulan, R. A., & Rahman, T. (2021). Representasi Mental Mahasiswa dalam Membaca Gambar Struktur Membran Sel Setelah Perkuliahan Biologi Sel dengan Pendekatan VARK. Jurnal Inovasi Pembelajaran Biologi, 2(1), 9-18.
Κaliampos, G., & Ravanis, K. (2019). Thermal conduction in metals: Mental representations in 5-6 years old children’s thinking. Jurnal Ilmiah Pendidikan Fisika ‘Al-BiRuNi’, 8(1), 1-9.
Kalyuga, S. (2010). Schema Acquisition and Source of Cognitive Load, in Plass JL et al. (ed.), Cognitive Load Theory. Cambridge University Press, p. 48–64.
Kalyuga, S. (2013). Effects of Learner Prior Knowledge and Working Memory Limitations on Multimedia Learning. Procedia - Social and Behavioral Sciences, 83, 25–29.
Kiliç, S. (2019). The Determination of Biology Teacher Candidates’ Mental Models and the Misconceptions Related to Catabolism and Anabolism by Drawing-Writing Technique. Higher Education Studies, 9(4), 71–79.
Li, W., Feng, Q., Zhu, X., Yu, Q., & Wang, Q. (2023). Effect of summarizing scaffolding and textual cues on learning performance, mental model, and cognitive load in a virtual reality environment: An experimental study. Computers & Education, 200, 104793.
Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J., & Burnett, M. M. (2016). Programming, problem-solving, and self-awareness: Effects of explicit guidance. In Proceedings of the 2016 CHI conference on human factors in computing systems (pp. 1449–1461).
Lucas, B. J., & Mai, K. M. (2022). Illumination and elbow grease: A theory of how mental models of the creative process influence creativity. Organizational Behavior and Human Decision Processes, 168, 104107.
Madsen, A., McKagan, S., & Sayre, E. (2013). The gender gap on concept inventories in physics: What is consistent and inconsistent, and what factors influence the gap?. Physical Review Special Topics - Physics Education Research, 9(2).
Mulyani, A. (2014). Representasi visual buku biologi SMA pada materi kingdom plantae. Scientiae Educatia: Jurnal Pendidikan Sains, 3(1), 35-48.
Nicholson, D. J. (2019). Is the cell really a machine?. Journal of theoretical biology, 477, 108-126.
Park, B., Münzer, S., Seufert, T., & Brünken, R. (2016). The role of spatial ability when fostering mental animation in multimedia learning: An ATI-study. Computers in Human Behavior, 64, 497-506.
Quillin, K., & Thomas, S. (2015). Drawing-to-learn: A framework for using drawings to promote model-based reasoning in biology. CBE—Life Sciences Education, 14(1), es2.
Rahmat, A., Soesilowaty, S. A., Nuraeni, E., Yogi, Y., Nugroho, I., & Gemilawati, M. (2017). Representasi Mental Siswa SMA dalam Membaca Gambar Biologi. Jurnal Pengajaran MIPA, 22(1), 68-76.
Ramadhan, F., Rahmat, A., & Nuraeni, E. (2017). Teaching Style and Mental Representation of Teachers in Biology Learning Using Convention Picture. In Int. J. Sci. Appl. Sci.: Conf. Ser (Vol. 2, No. 1).
Saptono, S., Isnaeni, W., & Sukaesih, S. (2017). Undergraduate students’ mental model of cell biology. Jurnal Pendidikan IPA Indonesia, 6(1).
Solso, R. L., MacLin, M. K., & MacLin, O. H. (2005). Cognitive psychology. Pearson Education New Zealand.
Stains, M., & Sevian, H. (2015). Uncovering Implicit Assumptions: A Large-scale Study on Students’ Mental Models of Diffusion. Research in Science Education, 45(6), 807-840.
Yakmaci-Guzel, B., & Adadan, E. (2013). Use of Multiple Representations in Developing Preservice Chemistry Teachers’ Understanding of the Structure of Matter. International Journal of Environmental and Science Education, 8(1), 109-130.
Yoshida, Y. (2021, November). Multiple Model Systems and Representation of Biological Phenomena. In Integrated HPS Conference Proceedings (Vol. 1, No. 1).
Zhao, F., Schnotz, W., Wagner, I., & Gaschler, R. (2020). Texts and pictures serve different functions in conjoint mental model construction and adaptation. Memory & cognition, 48, 69-82.
Refbacks
- There are currently no refbacks.