Bayangan Konsep (Concept Image) Mahasiswa pada Konsep Kombinasi Ditinjau dari Perbedaan Gender dan Kemampuan Matematika
Abstract
Bayangan konsep seseorang merupakan kumpulan gambar mental yang disertasi dengan sifat-sifat dan proses-proses yang terkait dengan konsep tersebut yang ada dalam pikiran. Oleh karenanya bayangan konsep berbentuk konsepsi-konsepsi nonverbal terhadap suatu konsep formal. Paper ini mengungkapkan tentang profil bayangan konsep mahasiswa program studi matematika tentang konsep kombinasi, khususnya untuk mahasiswa laki-laki dengan kemampuan rendah Matematika Dasar dan mahasiswa perempuan dengan kemampuan tinggi Matematika Dasar. Penelitian ini menggunakan penelitian pendekatan deskriptif kualitatif. Di dalam penelitian ini diungkapkan pula adanya miskonsepsi mahasiswa dan konflik kognitif serta respon intuitif terhadap konsep kombinasi dan pemecahan masalah yang terkait dengan kombinasi. Selain itu, adanya kategori bayangan konsep instrumental dan bayangan konsep relasional yang dimiliki mahasiswa terhadap konsep kombinasi serta dalam melakukan pemecahan masalah yang terkait kombinasi.
Someone’s concept image to a concept be a collection of all mental pictures together with properties and processes associated to the concept in his/her mind. Therefore, concept image as a non-verbal perceptions of a formal concept. This paper is to show the profile of concept image about concept of combination of the mathematics students who have high ability in basic mathematic. This study used qualitative descriptive approach. In this study was shown students’ concept image and thinking process of concept combination k objekt of n objek as a reciprocal connection between concept images and formal concepts and also shown category of concept image including instrumental concept image and relational concept image that belonged the students about concept of combination k object of n object.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Domingos, A. (2009, January). Learning Advanced Mathematical Concepts: The Concept of Limit. In Proceedings of CERME (Vol. 6, pp. 2266-2275).
Hsieh, C.J. (2014). Studying Intern Teachers’ Concept Image for Mathematics Teaching Through the Aspect of Students’ Mathematical Thinking. In Proceedings of the Joint Meeting of PME 38 and PME-NA 36, 6, 104. Vancouver, Canada: PME.
Kavousian, S. (2008). Enquiries into undergraduate students' understanding of combinatorial structures (Doctoral dissertation, Faculty of Education-Simon Fraser University).
Wawro, M., Sweeney, G. F., & Rabin, J. M. (2011). Subspace in linear algebra: investigating students’ concept images and interactions with the formal definition. Educational Studies in Mathematics, 78(1), 1-19.
Meel. (2003). Exploring Collaborative Concept Mapping In Calculus, Bowling Green State University, [email protected], akses tgl 22 September 2012
Mukono, S. (2015). Grade 11 Mathematics Learners’concept Images and Mathematical Reasoning on Transformations of Functions (Doctoral dissertation, UNIVERSITY OF SOUTH AFRICA).
Parameswaran. R. (2009). Concept image formation in understanding abstract definitions : a case study in graphs in discrete mathematics, Chennai Mathematical Institute , H1 SIPCOT IT Park Padur P.O., Siruseri 603106, India
Sfard, A. (1987). Two conceptions of mathematical notions: Operational and structural. In J. C. Bergeron, N. Herscovics e C. Kieran (Eds.), Proceedings of the Eleventh International Conference Psychology of Mathematics Education. PME-XI, 3, 162-169. Montreal.
Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational studies in mathematics, 22(1), 1-36.
Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification-the case of function. The concept of function: Aspects of epistemology and pedagogy, 25, 59-84.
Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification—the case of algebra. In Learning mathematics (pp. 87-124). Springer Netherlands.
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational studies in mathematics, 12(2), 151-169.
Tall, D.O. & Gray, E.M., (1994). Duality, ambiguity, and flexibility: A" proceptual" view of simple arithmetic. Journal for research in Mathematics Education, 26(2), 116-140.
Tall, D. (2004, July). Thinking through three worlds of mathematics. In Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 281-288).
Vinner, S. (1983). Concept definition, concept image and the notion of function.International Journal of Mathematical Education in Science and Technology,14(3), 293-305.
Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for research in mathematics education, 356-366.
Viirman, O. (2014). The function concept and university mathematics teaching. A Dissertation, Karlstad University Studies, Faculty of Health, Science and Technology Department of Mathematics and Computer Science SE-651 88 Karlstad, Sweden.
Refbacks
- There are currently no refbacks.