The Examination of the Wien’s Displacement Constant with Simulation and Simple Numerical Approaches
(1) Universitas Negeri Semarang
(2) Universitas Negeri Semarang
(3) Universitas Negeri Semarang
(4) Universitas Negeri Semarang
Abstract
The purpose of this research was to examine the value of the Wien’s constant using PhET Simulation virtual laboratory and simple numerical approach. The independent and dependent variable is blackbody temperature (T) and maximum wavelength (λ_max). In the use of a virtual laboratory, research is carried out by shifting the black body temperature feature so the graph will display a spectral power density that varies to the wavelenght. Numerical approach was used in this research is Newton Raphson methods by Python program. Both of simulation and numerical approach yield the value of the maximum wavelength (λ_max) for a black body temperature variation. The black body temperatures and their appropriate maximum wavelength data then analyzed using linear regression. Final result show that value Wien’s constant using PhET is 2,93 × 10-3 mK with relative error obtained is 1,07 % while using Newton Raphson the Wien’s constant value obtained is 3,07 × 10-3 mK with relative error is 5,90 %. The two approachs carried out produce data that slightly different, but still in a very good accucracy range when compared with theory. So, PhET Simulation and Newton Raphson methods effective to examine the value of the Wien’s constant.
Keywords
Full Text:
PDFReferences
Alper, M.P. & Aiordachioaiei, M. (2021). Experimental Study of Infrared Temperature Measurement and Black body Radiation. Physics Education, 56(6).
Astuti, I.A.D. & Handayani, S. (2018) Penggunaan Virtual Laboratory berbasis PhET Simulation untuk Menentukan Konstanta Wien. Jurnal Penelitian Pembelajaran Fisika, Vol 9 (2) : 66-72
Choudhury, S.L. & Paul, R.K. (2018). A New Approach to the Generalization Of Planck’s Law of Black-Body Radiation. Annals of Physics, 395, 317–325.
Feldman (2012) Newton’s Method. https://personal.math.ubc.ca/~feldman/m120/newton.pdf
Gasiorowicz, S. (2003) Quantum Physics: Third Edition. Wiley.
Nisa, P.A., Sari, P.Y., & Nana (2018) Virtual Laboratory berbasi PhET Simulation untuk Menentukan Konstanta Wien. Universitas Siliwangi.
Phillips, A.C. (2003) Introduction to Quantum Mechanics. Wiley.
Prihatiningtyas, S., Prastowo, T., & Jatmiko, B. (2013) Implementasi Simulasi PhET dan KIT Sederhana untuk Mengajarkan Keterampilan Psikomotor Siswa pada Pokok Bahasan Optik. Jurnal Pendidikan IPA Indonesia, Vol 2 (1) : 18-22
Puspita, I. (2020) PhET Application Program: Strategi Penguatan Pemahaman Pembelajaran Jarak Jauh pada Materi Radias Benda Hitam melalui Percobaan Berbantu Lab Virtual dan Media Sosial. Jurnal Pendidikan Madrasah, Vol 5 (1) : 57-68.
Rahman, A., Osman, S., Elnaeem, H., Tahir, A., Abdullah, M., & Elsanousi, W. (2022) Finding the Roots of Non-linear Equations Numerically using Newton’s Raphson Method by A New Mathematical Technique. International Journal of Mathematics and Computer Research. Vol 10 (03) : 2613-2616
Remani, C (2013) Numerical Methods for Solving Systems of Nonlinear Equations.
Saparullah (2017) Rancang Bangun Sistem Penentuan Temperatur Nonkontak Berdasarkan Hukum Pergeseran Wien. Universitas Negeri Yogyakarta. Thesis.
Schubert, E.F. (2006) Light-Emitting Diodes, Second Edition. Cambridge University Press.
Soegeng, R. (1993) Komputasi Numerik dengan Turbo Pascal, Penerbit Andi, Yogyakarta
Stewart & Johnson. (2016). Blackbody Radiation: a History of Thermal Radiation Computational Aids and Numerical Methods.
Sutarno, Erwin, & Hayat, M.S. (2017) Radiasi Benda Hitam dan Efek Fotolistrik Sebagai Konsep Kunci Revolusi Saintifik dalam Perkembangan Teori Kuantum Cahaya. Jurnal Ilmiah Multi Science, Vol 9 (2) : 51-58
Widagda, I.G.A. (2016) Pembuktian Hukum Pergeseran Wien Secara Numerik dengan Metode Newton Raphson Termodifikasi. Universitas Udayana. http://erepo.unud.ac.id/id/eprint/473/1/f1b47daf283e5178ca367f41ce06d724.pdf
Zettili, N. (2003) Quantum Mechanics : Concepts and Applications. Wiley.
Zwinkels, J. (2016) Blackbody and Blackbody Radiation. Encylopedia of Color Science and Technology. DOI 10.1007/978-1-4419-8071-7_370
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License