Scientific Explanation of the Photoelectric Effect Using Common Objects

S. Prayogi(1), F. Silviana(2), Z. Zainuddin(3),


(1) Pertamina University, Indonesia
(2) Universitas Negeri Medan, Indonesia
(3) Universitas Syiah Kuala, Indonesia

Abstract

In this study, a tool that can explain laboratory-scale photoelectric effect events was designed. So that having a tool that can explain the photoelectric effect will make it easier for users to study the nature of light as a particle. This tool is designed according to its function which will know that the photoelectric effect event is not affected by light intensity but is influenced by the frequency of a light source and the wavelength that shines on a metal so that electrons will move from a negative source towards a positive voltage source. A gadget for this experiment was built uses phototubes and cheap LEDs as light sources instead of traditional mercury lamps. Multiple LEDs operating in the wavelength range 470–631 nm can be used to measure the Planck constant to an accuracy better than 10%. By varying the intensity of the LEDs, it is possible to monitor the energy of the electrons and photocurrent with respect to the amount of light. The results show that the voltage applied to the photodiode leg (cathode) has a different value for each color spectrum and the output voltage obtained for each different wavelength, the less light intensity received by the photodiode, the smaller the output voltage value.

Keywords

LEDs, photoelectric effect, Planck constant, science

Full Text:

PDF

References

Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285–1303.

Blackburn, T. G. (2020). Radiation reaction in electron–beam interactions with high-intensity lasers. Reviews of Modern Plasma Physics, 4(1), 5.

Checa, D., & Bustillo, A. (2020). A review of immersive virtual reality serious games to enhance learning and training. Multimedia Tools and Applications, 79(9), 5501–5527.

Checchetti, A., & Fantini, A. (2015). Experimental Determination of Planck’s constant using Light Emitting Diodes (LEDs) and Photoelectric Effect. World Journal of Chemical Education, 3(4), 87-92.

Darminto, D., Asih, R., Priyanto, B., Baqiya, M. A., Ardiani, I. S., Nadiyah, K., Laila, A. Z., Prayogi, S., Tunmee, S., Nakajima, H., Fauzi, A. D., Naradipa, M. A., Diao, C., & Rusydi, A. (2023). Unrevealing tunable resonant excitons and correlated plasmons and their coupling in new amorphous carbon-like for highly efficient photovoltaic devices. Scientific Reports, 13(1), 1-8.

dos Santos, A. D. P., Medola, F. O., Cinelli, M. J., Garcia Ramirez, A. R., & Sandnes, F. E. (2021). Are electronic white canes better than traditional canes? A comparative study with blind and blindfolded participants. Universal Access in the Information Society, 20(1), 93–103.

Dutta Gupta, S., & Agarwal, A. (2017). Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. In S. Dutta Gupta (Ed.), Light Emitting Diodes for Agriculture: Smart Lighting (pp. 1–25). Springer.

Falk, J., Eichler, E., Windt, K., & Hütt, M.-T. (2022). Physics is Organized Around Transformations Connecting Contextures in a Polycontextural World. Foundations of Science, 27(3), 1229–1251.

Friedman, R. M. (2022). The 100th Anniversary of Einstein’s Nobel Prize: Facts and Fiction. Annalen Der Physik, 534(11),1-9.

Ghufron, S., & Prayogi, S. (2023). Cooling System in Machine Operation at Gas Engine Power Plant at PT Multidaya Prima Elektrindo. Journal of Artificial Intelligence and Digital Business (RIGGS), 1(2), 30-34.

Hamdani, D., Prayogi, S., Cahyono, Y., Yudoyono, G., & Darminto, D. (2022). The influences of the front work function and intrinsic bilayer (i1, i2) on p-i-n based amorphous silicon solar cell’s performances: A numerical study. Cogent Engineering, 9(1), 2110726.

Janda, M., Navrátil, O., Haisel, D., Jindřichová, B., Fousek, J., Burketová, L., Čeřovská, N., & Moravec, T. (2015). Growth and stress response in Arabidopsis thaliana, Nicotiana benthamiana, Glycine max, Solanum tuberosum and Brassica napus cultivated under polychromatic LEDs. Plant Methods, 11(1), 30-31.

Krotkus, S., Kasemann, D., Lenk, S., Leo, K., & Reineke, S. (2016). Adjustable white-light emission from a photo-structured micro-OLED array. Light: Science & Applications, 5(7),1-6.

Pan, A., & Zhu, X. (2015). 12—Optoelectronic properties of semiconductor nanowires. In J. Arbiol & Q. Xiong (Eds.), Semiconductor Nanowires. Woodhead Publishing. (pp. 327–363).

Prayogi, S. (2023a). Sel Surya dalam Konsep Fisika (Vol. 1). Solok: Mitra Cendekia Media.

Prayogi, S. (2023). Thin Layer Deposition of a-Si: H n-Type Hydrogenated Amorphous Silicon using PECVD. Journal of Science and Informatics for Society (JSIS), 1(1), 14-18.

Prayogi, S., Ayunis, Kresna, Cahyono, Y., Akidah, & Darminto. (2017). Analysis of thin layer optical properties of A-Si:H P-Type doping CH4 and P-Type without CH4 is deposited PECVD systems. Journal of Physics: Conference Series, 853(1), 1-6.

Prayogi, S., Cahyono, Y., & Darminto, D. (2022). Electronic structure analysis of a-Si: H p-i1-i2-n solar cells using ellipsometry spectroscopy. Optical and Quantum Electronics, 54(11), 732.

Prayogi, S., Cahyono, Y., Iqballudin, I., Stchakovsky, M., & Darminto, D. (2021). The effect of adding an active layer to the structure of a-Si: H solar cells on the efficiency using RF-PECVD. Journal of Materials Science: Materials in Electronics, 32(6), 7609–7618.

Prayogi, S., Silviana, F., & Hamid, T. (2023). Analysis of the process of coloring objects based on the optical properties of objects. Cakrawala Jurnal Ilmiah Bidang Sains, 1(2),55-59.

Prayogi, S., Silviana, F., & Zainuddin, Z. (2023a). Peningkatan Performa Sel Surya Dengan Sistem Peredam Panas. Jambura Journal of Electrical and Electronics Engineering, 5(2), 143-147.

Prayogi, S., Silviana, F., & Zainuddin, Z. (2023b). Understanding of the Experimental Concept of Radiation Absorption of Radioactive Materials. Journal of Physics: Theories and Applications, 7(1), 45-52.

Ramadhan, R. A., Kakke, G. R., Fajar, I. N., & Prayogi, S. (2023). Smart Trash Bin Berbasis Internet Of Things Menggunakan Suplai dari Panel Surya. G-Tech: Jurnal Teknologi Terapan, 7(3), 1149–1158.

Schirripa Spagnolo, G., Leccese, F., & Leccisi, M. (2019). LED as Transmitter and Receiver of Light: A Simple Tool to Demonstration Photoelectric Effect. Crystals, 9(10), 1-17.

Silviana, F., & Prayogi, S. (2023). An Easy-to-Use Magnetic Dynamometer for Teaching Newton’s Third Law. Jurnal Pendidikan Fisika dan Teknologi, 9(1), 78-86.

Turnbull, D., Chugh, R., & Luck, J. (2021). Transitioning to E-Learning during the Covid-19 pandemic: How have Higher Education Institutions responded to the challenge? Education and Information Technologies, 26(5), 6401–6419.

Waymouth, J. F. (2017). History of Light Sources. In R. Karlicek, C.-C. Sun, G. Zissis, & R. Ma (Eds.), Handbook of Advanced Lighting Technology. (pp. 3–40). Springer International Publishing.

Zainuddin, Z., Syukri, M., Prayogi, S., & Luthfia, S. (2022). Implementation of Engineering Everywhere in Physics LKPD Based on STEM Approach to Improve Science Process Skills. Jurnal Pendidikan Sains Indonesia (Indonesian Journal of Science Education), 10(2), 231-239.

Zhao, Y., Yu, J., Bergamini, J.-F., Léger, Y., Sojic, N., & Loget, G. (2021). Photoelectrochemistry at semiconductor/liquid interfaces triggered by electrochemiluminescence. Cell Reports Physical Science, 2(12), 1-15.

Zhu, D., & Humphreys, C. J. (2016). Solid-State Lighting Based on Light Emitting Diode Technology. In M. D. Al-Amri, M. El-Gomati, & M. S. Zubairy (Eds.), Optics in Our Time (pp. 87–118). Springer International Publishing.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License