Approximative Relationship Between The Energy Function (E) and Hubble Function (H) in Cosmology: Practical and Theoretical Analysis

Taufik Roni Sahroni(1), Dolfie Paulus Pandara(2), Arnowo Hari Wibowo(3), Yahya Halim Alatif(4), Febriansyah Wardana(5), Mohd Shahir Kasim(6), Ruben Cornelius Siagian(7),


(1) Departement of Industrial Engineering, Bina Nusantara University, Indonesia
(2) Department of Physics, Sam Ratulangi University, Indonesia
(3) Departement of Industrial Engineering, Bina Nusantara University, Indonesia
(4) Departement of Industrial Engineering, Bina Nusantara University, Indonesia
(5) Departement of Industrial Engineering, Bina Nusantara University, Indonesia
(6) CADCAM TECH Research Group, Fakulti Reka Bentuk Inovatif dan Teknologi, Universiti Sultan Zainal Abidin, Malaysia
(7) Department of Physics, Universitas Negeri Medan, Indonesia

Abstract

This research delves into the approximate relationship between the energy function (E) and the Hubble function (H) within cosmological. Utilizing the Friedmann equation, it establishes a link between the universe's scale factor and the Hubble function. Through Taylor series approximation, the study derives an approximation of the energy function, under specific assumptions and approximations. Asymptotic analysis investigates the behavior of variables y and s, shedding light on function limits and behaviors. The study incorporates an interactive 3D scatter plot visualization to elucidate the relationship between cosmological parameters and physical systems, aiding in a comprehensive understanding of dynamics. Practical recommendations emphasize increasing data points for accuracy and validating with observational data, while theoretical suggestions advocate exploring higher-order terms and considering additional physical factors.

Keywords

Energy, Hubble, Approximate relationship, Asymptotic analysis, Exact solution, Cosmology

Full Text:

PDF

References

Barrientos, E., Mendoza, S., & Padilla, P. (2021). Extending Friedmann equations using fractional derivatives using a Last Step Modification technique: The case of a matter dominated accelerated expanding Universe. Symmetry, 13(2), 174.

Barrow, J. D. (2008). New theories of everything: The quest for ultimate explanation (Issue 132). Oxford University Press.

Baryshev, Y., & Teerikorpi, P. (2011). Fundamental questions of practical cosmology: Exploring the realm of galaxies (Vol. 383). Springer Science & Business Media.

Chaudhary, H., Arora, D., Debnath, U., Mustafa, G., & Maurya, S. K. (2023). A new cosmological model: Exploring the evolution of the universe and unveiling super-accelerated expansion. arXiv Preprint arXiv:2308.07354.

De Bruijn, N. G. (1981). Asymptotic methods in analysis (Vol. 4). Courier Corporation.

Dodelson, S., & Schmidt, F. (2020). Modern cosmology. Academic press.

Ellis, G. F., Maartens, R., & MacCallum, M. A. (2012). Relativistic cosmology. Cambridge University Press.

Fatehi, R., & Manzari, M. T. (2011). Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Computers & Mathematics with Applications, 61(2), 482–498.

Felten, J. E., & Isaacman, R. (1986). Scale factors R (t) and critical values of the cosmological constant Λ in Friedmann universes. Reviews of Modern Physics, 58(3), 689.

Ferguson, K. (2004). The Fire in the Equations: Science Religion & Search For God. Templeton Foundation Press.

Fortov, V. E., & Fortov, V. E. (2016). High Energy Densities in Planets and Stars. Extreme States of Matter: High Energy Density Physics, 505–590.

Freedman, W. (2003). The Hubble Constant and the Expanding Universe: A newly refined value of H 0, the expansion rate of the universe, may herald a first step toward a new era of" precision" cosmology. American Scientist, 91(1), 36–43.

Frieman, J. A., Turner, M. S., & Huterer, D. (2008). Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys., 46, 385–432.

Heidelberger, M. (2006). Applying models in fluid dynamics. International Studies in the Philosophy of Science, 20(01), 49–67.

Jackson, N. (2015). The hubble constant. Living Reviews in Relativity, 18(1), 2.

Klyatskin, V. I. (2005). Stochastic equations through the eye of the physicist: Basic concepts, exact results and asymptotic approximations. Elsevier.

Layzer, D. (1991). Cosmogenesis: The growth of order in the universe. Oxford University Press.

Liddle, A. (2015). An introduction to modern cosmology. John Wiley & Sons.

Martel, H., & Shapiro, P. R. (1998). A convenient set of comoving cosmological variables and their application. Monthly Notices of the Royal Astronomical Society, 297(2), 467–485.

Moresco, M., Verde, L., Pozzetti, L., Jimenez, R., & Cimatti, A. (2012). New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z∼ 1.75. Journal of Cosmology and Astroparticle Physics, 2012(07), 053.

Overduin, J., & Cooperstock, F. (1998). Evolution of the scale factor with a variable cosmological term. Physical Review D, 58(4), 043506.

Peebles, P. J. E., & Ratra, B. (2003). The cosmological constant and dark energy. Reviews of Modern Physics, 75(2), 559.

Poulin, V., Smith, T. L., Karwal, T., & Kamionkowski, M. (2019). Early dark energy can resolve the Hubble tension. Physical Review Letters, 122(22), 221301.

Seung, H. S., Sompolinsky, H., & Tishby, N. (1992). Statistical mechanics of learning from examples. Physical Review A, 45(8), 6056.

Shapiro, I. L., & Sola, J. (2008). Can the cosmological" constant" run?-It may run. arXiv Preprint arXiv:0808.0315.

Singh, C., & Solà Peracaula, J. (2021). Friedmann cosmology with decaying vacuum density in Brans–Dicke theory. The European Physical Journal C, 81(10), 1–16.

Vankov, K., & Vankov, A. (2023). Dark Matter in Galaxies and Lambda-CDM Universe.

Yang, Y., Lu, X., Qian, L., & Cao, S. (2023). Potentialities of Hubble parameter and expansion rate function data to alleviate Hubble tension. Monthly Notices of the Royal Astronomical Society, 519(4), 4938–4950.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License