Analisis FTIR dan Minimum Loss pada Kaca Tellurite-Bismuth-Zinc-Plumbum untuk Aplikasi Fiber Optik Infrared

Wahyudi -(1), A. Marzuki(2), Cari -(3), A. Pramuda(4),


(1) Jl. Ampera No.88 Pontianak, 78116
(2) Program Studi Ilmu Fisika Program Pascasarjana UNS Surakarta
(3) Program Studi Ilmu Fisika Program Pascasarjana UNS Surakarta
(4) Program Studi Pendidikan Fisika STKIP PGRI Pontianak

Abstract

Peneltian ini bertujuan menganalisis spektrum Fourier Transform Infra Red (FTIR) dan menentukan minimum loss dari kaca Tellurite-Bismuth-Zinc-Plumbum (TBZP) yang dipengaruhi oleh variasi (PbO). Kaca TBZP difabrikasi dengan teknik melt quenching dengan komposisi 55TeO2–2Bi2O3–[43-x]ZnO–xPbO (%mol) dengan x=2, 3, 4, 5. Hasil uji spektrum Fourier Transform Infra Red (FTIR) menunjukkan pita absorbsi terbesar berada pada panjang gelombang lebih dari 620nm. Absorbansi tersebut lebih diakibatkan oleh adanya transisi vibrasi pada daerah infrared. Minimum loss pada kaca TBZP diprediksikan secara teoritis melalui fitting data infrared edge dengan kurva Rayleigh scattering. Minimum loss kaca TBZP sebasar 2,94 dB/km hingga 2,35 dB/km pada λ=5534,2nm hingga 5821,2nm. Nilai minimum loss menurun seiring pertambahan konsentrasi ion Pb2+ dalam kaca TBZP. Sifat tersebut menjadikan kaca ini sebagai kandidat yang baik untuk aplikasi yang menggunakan gelombang infrared seperti fiber optik infrared.

 

The aims of this research were to analyze the spectrum of Fourier Transform Infra Red (FTIR) and determine the minimum loss of Tellurite-Bismuth-Zinc-Plumbum (TBZP) based glass which affected by the variation of (PbO). The TBZP glass has been fabricated by melt quenching technique with composition 55TeO2–2Bi2O3–[43-x]ZnO–xPbO (mol%) with x=2, 3, 4, 5. Fourier Transform Infra Red (FTIR) spectra test results showed that the greatest absorption bands were at wavelengths over 620nm. Vibrational transition has the reason behind the absorbance in the infrared region. Minimum loss on glass TBZP theoretically was predicted by fitted data from the infrared edge and rayleigh scattering curve. The minimum loss of TBZP was of the range 2,94 dB/km to 2,35 dB/km at λ=5534,2nm to 5821,2nm. The minimum loss of TBZP glass decreases as the Pb2+ content in glass increases. This makes these glasses are good candidate for IR-application such as infrared optical fiber.

Keywords

FTIR; glass; minimum loss; tellurite.

Full Text:

PDF

References

Brady, D.J., Schweizer, T., Wang, J. & Hewak, D.W. 1998. Minimum Loss Predictions and Measurements in Gallium Lanthanum Sulphide based Glasses and Fibre. Journal of Non-Crystalline Solid. 242: 92-98.

Deen, L.M.S.E., Salhi, M.S.A. & Kholy, M.M.E. 2008. IR and UV Spectral Studies for Rare Earths-doped Tellurite Glasses. Journal of Alloys and Compounds 465: 333-339.

Dimitrov, D. & Komatsu, T. 2010. An Intepretation of Optical Properties of Oxides and Oxide Glasses in Therm of The Electronic Ion Polarizability and Average Single Bond Strength (Review). Journal of the University of Chemical Technology and Metallurgy 45(3): 219-250.

Eraiah, B. 2010. Optical Properties of Lead–Tellurite Glasses doped with Samarium Trioxide. Journal Bullk Material Science 33(4): 391-394.

Harrington, J.A. 1999. Infrared Fiber Optics. OSA Handbook, Vol. III. USA: McGraw Hill Publisher

Kim, S.H., Yoko, T. & Sakka, S. 1993. Nonlinear Optical Properties of TeO2-Based Glasses: La2O3-TeO2 Binary Glasses. Journal American Ceram Society 76: 865-869.

Lancy, M., Regnier, E. & Poumellec, B. 2009. Fictive Temperature Measurements inSilicabased Optical Fibers and Its Application to Rayleigh Loss Reduction, Optical Fiber New Developments, Chrstophe Lethien (Ed.). Croatia: InTech Europe.

Lezal, D., Jitka, P., Petr, K., Jana, B., Marcel, P. & Jiri, Z. 2001. Heavy Metal Oxide Glasses: Preparation and Physical Properties. Journal of Non-Crystalline Solid 284: 288-295.

Lin, A., Zhang, A., Bushong, E.J. & Toulouse, J. 2009. Single- Core Tellurite Glass Fiber for Infrared and Nonlinear Applications. Journal of Optic Express. OSA. Vol. 17(19), pp. 16716-16721.

Mallawany, R.E. 2002. Tellurite Glasses Handbook: Physics Properties and Data. USA: CRC Press.

Mallawany, R.E., Abdallah, M.D. & Ahmed I.A. 2008. New Tellurite Glass: Optical Properties. Journal Material Chemistry and Physics 109: 291-296.

Manning, S. 2011. A Study of Tellurite Glass for Electro-optic Fibre Devices. A Thesis Doctor of Philosophy in the Faculty of Science School of Chemistry & Physics University of Adelaide. Australia.

Massera, J. 2009. Nucleation and Growth Behavior of Tellurite-based Glasses Suitable for MID-Infrared Applications. A Thesis Doctor of Philosophy of Material Science and Engeneering of Clemson University. United States.

Mitachi, S. & Miyashita, T. 2007. Preparation of low-loss fluoride glass fibre. Electronic Letters, Vol.18(4), pp.170-171. Artikel tersedia di http://ieeexplore.ieee.org/xpl/articleDetails.jsp, diakses pada tanggal 29 Nov 2012.

Oo, H.M., Halimah, M.K. & Yusoff, W.M.D.W. 2012. Optical Properties of Bismuth Tellurite based Glasses. International Journal of Molecular Science 13: 4623-4631.

Rajendran, V. 2000. Elastic properties of the lead containing bismuth tellurite glasses: An ultrasonic study. Proceedings of 15th WCNDT, 15-21 October 2000 at Rome, Italy.

Richards, B.D.O. & Jha, A. 2011. Oxide Glasses for Mid-Infrared Lasers. Artikel tersedia di http://spie.org/x47665.xml?pf=true&ArticleID=x47665, diakses pada tanggal 29 Nov 2012.

Saad, M. 2009. Fluoride Glass Fibre: Atr of State. Proceeding of SPIE Vol. 7316. No.1-16.

Shelby, J.E. 2005. Introduction to Glass Science and Technology 2nd edition. USA: The Royal Society Of Chemistry.

Simpson, D.A. 2008. Spectroscopy of Thulium Doped Silica Glass. Thesis Submitted for the Degree of PhD Optical Technology Research Laboratory School of Electrical Engineering: University of Victoria. Australia.

Suri, N., Bindra, K.S., Kumar, P., Kamboj, M.S. & Thangaraj, R. 2006. Thermal Investigations Ion Bulk Se(80-x) Te2O-Bix Chalcogenide Glass. Journal of Ovonic research 6(2)111-118.

Tichá, H., Schwarz, J., Tichý, L. & Mertens, R. 2004. Physical Properties Of PbO-ZnO-P2O5 Glasses II. Refractive Index And Optical Properties. Journal of Optoelectronics and Advanced Materials 6(3): 747-753.

Yousef, E., Houtzel, M. & Rüssel, C. 2007. Effect of ZnO and Bi2O3 Addition on Linear and Non-linear Optical Properties of Tellurite Glasses. Journal of Non-Crystalline Solid 353: 333-338.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License