Identifikasi Tahapan Proses Berpikir Kreatif Siswa SMP dalam Aktivitas Pengajuan Masalah Matematika
Abstract
Berpikir kreatif merupakan salah satu aspek penting dalam matematika. Penelitian ini bertujuan untuk mengidentifikasi tahapan proses berpikir kreatif siswa SMP dalam aktivitas pengajuan masalah matematika. Tahapan tersebut didasarkan pada hasil Tugas Pengajuan Masalah Matematika (TPMM) dan wawancara. Penelitian ini dilakukan di salah satu SMP Negeri di Kota Jambi. Subjek penelitian ini adalah 2 siswa SMP Kelas IX dengan kriteria kreatif, dengan alat pengumpul data berupa TPMM dan pedoman wawancara. Analisis data TPMM dilakukan dengan menganalisis soal yang dapat diselesaikan, kemudian dilihat berdasarkan indikator berpikir kreatif yaitu kelancaran (fluency), keluwesan (flexibility) dan kebaruan (novelty). Wawancara dilakukan berdasarkan 4 tahap proses berpikir kreatif yaitu persiapan, inkubasi, iluminasi, dan verifikasi. Hasil penelitian menunjukkan bahwa siswa kreatif melewati empat tahap proses berpikir kreatif, yaitu persiapan, inkubasi, iluminasi, dan verifikasi. Pada tahap persiapan siswa berusaha mendapatkan wawasan dalam menghadapi masalah yang diberikan; tahap inkubasi siswa mencari ide; tahap iluminasi siswa memunculkan ide; dan tahap verifikasi siswa menguji ide yang dihasilkan.
Creative thinking is one of the important aspects in mathematics. This study aims to identify the stages of the creative thinking process of junior high school students in the activity of submitting mathematical problems. These stages are based on the results of the Task for Submission of Mathematical Problems (TPMM) and interviews. This research was conducted at one of the Public Middle Schools in Jambi City. The subject of this study were 2 junior high school students of Class IX with creative criteria, with data collection tools in the form of TPMM and interview guidelines. TPMM data analysis is done by analyzing the questions that can be solved, then seen based on creative thinking indicators, namely fluency, flexibility and novelty. Interviews were conducted based on 4 stages of the creative thinking process, namely preparation, incubation, illumination, and verification. The results showed that creative students passed the four stages of the creative thinking process, namely preparation, incubation, illumination, and verification. In the preparation stage students try to gain insight in dealing with problems given; incubation stage students look for ideas; the student's illumination stage raises ideas; and the verification stage students test the idea produced.
Keywords
Full Text:
PDFReferences
Bonotto, C., & Dal Santo, L. (2015). On the relationship between problem posing, problem solving, and creativity in the primary school. In Mathematical problem posing (pp. 103-123). Springer, New York, NY.
Brown, S.I., & Walter, M. I. (2005). The Art Problem Posing. New Jersey: Erlbaum.
Bush, W.S. (2003). Mathematics Assessment, A Practical Handbook for Grades 9 – 12. Reston: NCTM.
Chua, P. H., & Wong, K. Y. (2012). Characteristics of Problem Posing of Grade 9 Students on Geometric Tasks. Mathematics Education Research Group of Australasia.
Daane, C.J. & lowry, P.K. (2004). Non-Routine Problem Solving Activities. Alabama Journal Mathematics Activities, 25-28.
English, L. D. (1997). Development of Fifth Grade Children’s Problem Posing Abilities. Educational Studies in Mathematics, 34, 183-217.
Gomez, J. G. (2007). What do We Know About Creativity?. The Journal of Effective Teaching, 7(1), 31-43.
Harpen, X.Y.V, & Sriraman, B. (2013). Creativity and Mothematical Problem Posing : An Analysis of High school students' Mathematical Problem Posing in China and United States. Educational Studies in Mathematics, 82(2); 201-221.
Herring, S.R., Jones, B.R., & Bailey, B.P. (2009). Idea Generation Techniques Among Creative Professionals. Proceedings of the 42nd Hawaii International Conference on System Sciences, 1-10. Honolulu: Manoa.
Kemendikbud. (2014). Permendikbud Nomor 58 tahun 2014 tentang Kurikulum 2013 Sekolah Menengah Pertama/Madrasah Tsanawiyah. Jakarta : Kemendikbud.
Kemendikbud. (2014). Permendikbud Nomor 103 tahun 2014 tentang Pembelajaran pada Pendidikan Dasar dan Pendidikan Menengah. Jakarta : Kemendikbud.
Kontorovich, I., Koichu, B., Leiki, R., & Berman, A. (2011). . Indicators of Creativity in Mathematical Problem Posing: How Indicative are They?. Proceedings 6th International Conference Creativity in Mathematics Education, 120-125. Latvia: Latvia University.
Lau, J. Y. P. (2011). An Introduction to Critical Thinking And Creativity. New Jersey : John WileY & Sons,Inc.
Mishra, S. & Lyer, S. (2013). Problem Posing Exercise (PPE): an Instructional Strategy for Learning of Complex Material in Introductory Progamming Courses. In Technology for Education (T4E), 151-158.
Moleong, L. J. (2012). Metodologi Penelitian Kualitatif. Bandung: Remaja Rosdakarya.
Regato, J. D., & Gilfeather, M. (1999). Routine & Nonroutine Problem Solving. Mathematics Experience.
Resnick, L. (1987). Education and Learning to Think. Washington DC: National Academy Press.
Sani, R.A. (2015). Pembelajaran Saintifik untuk Implementasi Kurikulum 2013 (Y.S. Hayati,Ed.). Jakarta : PT Bumi Aksara.
Schmalz, R. (1973). Categorization of Questions that Mathematics Teachers Ask. The Mathematics Teacher, 66(7), 619-626. Reston, VA: NCTM.
Senk, S. L., Beckmann, C. E., & Thompson, D. R. (1997). Assessment and Grading in High School Mathematics Classrooms. Journal for Research in Mathematics Education, 28(2), 187-215.
Silver, E. A. 1994. On Mathematical Problem Posing. For the Learning of Mathematics, 14(1), 19–28.
Silver, E. A. (1997). Fostering Creativity Through Instruction Rich in Mathematical Problem Solving and Problem Posing. Zentralbatt fiir Didaktik der Mathematik (ZDM), 29(3), 75-80.
Siswono, T.Y.E. (2004). Identifikasi Proses Berpikir Kreatif Siswa dalam Pengajuan Masalah (Problem Posing) Matematika Berpandu dengan Model Wallas dan Creative Problem Solving (CPS). Buletin Pendidikan matematika, 6(2), ISSN: 1412-2278.
Siswono, T.Y.E. (2007). Penjejangan Kemampuan Berpikir Kreatif dan Identifikasi Masalah Tahap Berpikir Kreatif dalam Memecahkan Masalah Matematika. Disertasi tidak diterbitkan. Surabaya: Pascasarjana Universitas Negeri Surabaya.
Sriraman, B. & Lee, K. H. An Exploratory Study of Relationships Between Students’ Creativity and Mathematical Problem-Posing Abilities, dalam B. Sriraman & K.H. Lee (Eds.), The Elements of Creativity and Giftedness in Mathematics (Rotterdam : Sense Publishers, 2011) 5-28.
Sriraman, B., Haavold, P., & Lee, K. (2013). Mathematical Creativity and Giftedness: a Commentary on and review of Theory, New Operational Views, and Ways Forward. Zentralbatt fur Didaktik der Mathematik (ZDM), 45, 215-225.
Solso, R, (2008). Psikologi Kognitif. Terjemahan Rahardanto, M. & Batuadji, K. Jakarta : Erlangga.
Sugiyono. (2014). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta.
Sukmadinata, N.S. (2004). Psikologi Kognitif. Surabaya : Srikandi.
Takahashi, A. (2008). Communication as Process for Students to Learn Mathematical. [Online]. Tersedia: http://www.criced.tsukuba.ac.jp/math/apec/apec2008/papers/PDF/14. Akihiko_Takahashi_USA.pdf. [29 Juli 2016].
Thompson, T. (2008). Mathematics Teachers’ Interpretation of Higher-Order Thinking in Bloom’s Taxonomy. International Electronic Journal of Mathematics Education, 3(2), 96-09.
Torrance, E. P. (1968). Creativity what Research Says to The Teacher. Washington DC: National Education Asociation.
Refbacks
- There are currently no refbacks.