Students’ Intuition of Field Independent and Field Dependent in Solving Divergence Mathematical Problem

Zainal Abidin, Nida Jarmita

Abstract

In solving divergent mathematical problem, there is a different mental activity of formal cognitition. The activity is wel known as intuitive cognition or intuition. This study aims at exploring students’ intuition styles of Field Independent and Field Dependent when they solve divergent mathematical problems. The subjects of this study were GEEFT-test-selected students of MAN Model Banda Aceh who had intuition styles of Field Independent and Field Dependent. The findings of this study showed that field independent students used direct affirmatory intuition in understanding problems, direct and global anticipatory intuition in making plans for solutions, and global anticipatory intuition in solving divergent mathematical problems. On the other hand, field dependent students used direct affirmatory intuition in understanding problems, direct and global anticipatory intuition in making problem-solving plans, and anticipatory global intuition in re-examining divergent mathematical problem solving.

Penelitian ini bertujuan untuk mengeksplorasi intuisi siswa yang bergaya kognitif Field Independent dan Field Dependent saat memecahkan masalah matematika divergen. Dalam penelitian ini subjeknya adalah siswa MAN Model Banda Aceh yang memiliki gaya kognitif field independent dan field dependent,  dipilih menggunakan tes GEEFT. Temuan dalam penelitian ini diperoleh bahwa siswa field independent menggunakan intuisi afirmatori yang bersifat langsung dalam memahami masalah, dalam membuat rencan pemecahan menggunakan intuisi antisipatori bersifat langsung dan global, dan dalam memecahkan masalah matematika divergen menggunakan intuisi antisipatori yang bersifat global. Sedangkan siswa field dependent menggunakan intuisi afirmatori yang bersifat langsung dalam memahami masalah, dalam membuat rencana pemecahan masalah menggunakan intuisi antisipatori yang besifat langsung dan global, dan dalam memeriksa kembali pemecahan masalah matematika divergen menggunakan intuisi antisipatori yang bersifat global.

Keywords

intuition; problem solving; mathematical divergent problem

References

Abidin, Z. (2015). Intuisi Dalam Pembelajaran Matematika. Jakarta: Lentera Ilmu.

Antonini, S. (2019). Intuitive acceptance of proof by contradiction. ZDM, 51(5), 793-806.

Bruner, J.S. 1974 ‘Bruner on the learning of mathematics – A “process†orientation. Dalam Aichele, D.B., Readings in Secondary School Mathematics. Prindle, Weber, & Schmidt. Boston.

Bruner, J.S. (1977). 'Bruner on the learning of mathematics – A "process" orientation. Dalam Aichele, D.B., Readings in Secondary School Mathematics. Boston : Prindle, Weber, & Schmidt.

Budi Usodo. (2007). Peran Intuisi dalam Pemecahan Masalah. Makalah disampaikan pada Konferensi Nasional Pendidikan Matematika II Di UPI Bandung.

Ervynck, G., & Tall, D. (1991). Advanced mathematical thinking. Dordrecht : Kluwer Academic

Fischbein, E. (1982). Intuition and proof. For the learning of mathematics, 3(2), 9-24.

Fischbein, E. (1983). Intuition and Analytical Thinking in Mathematics Education. International Reviews on Mathematical Education, 15(2), 68-74.

Fischbein, H. (1987). Intuition in science and mathematics: An educational approach (Vol. 5). Springer Science & Business Media.

Fischbein, E. (1994). The interaction between the formal, the algorithmic, and the intuitive components in a mathematical activity. Didactics of mathematics as a scientific discipline, 231-245.

Fischbein, E., & Grossman, A. (1997). Schemata and intuitions in combinatorial reasoning. Educational studies in Mathematics, 34(1), 27-47.

Fischbein, E. (1999). Intuitions and schemata in mathematical reasoning. Educational studies in mathematics, 38(1-3), 11-50.

Gabriel, M. (2020). Intuition, Representation, and Thinking: Hegel’s Psychology and the Placement Problem. In The Palgrave Hegel Handbook (pp. 317-336). Palgrave Macmillan, Cham.

Roh, K. H. (2005). College students’ intuitive understanding of the concept of limit and their level of reverse thinking (Doctoral dissertation, The Ohio State University).

Henden, G. (2004). Intuition and Its Role in Strategic Thinking Doktoral Dissertation, BI Norwegian School of Management).

Lee, K. H. (2017). Convergent and divergent thinking in task modification: A case of Korean prospective mathematics teachers’ exploration. ZDM, 49(7), 995-1008.

Leron, U., & Hazzan, O. (2009). Intuitive vs analytical thinking: four perspectives. Educational Studies in Mathematics, 71(3), 263-278.

Mariotti, M. A., & Pedemonte, B. (2019). Intuition and proof in the solution of conjecturing problems’. ZDM, 51(5), 759-777.

Munandar, U. (1991). Kreativitas dan Keberbakatan. Penerbit PT Gramedia Pustaka Utama, Jakarta.

Obersteiner, A., Bernhard, M., & Reiss, K. (2015). Primary school children’s strategies in solving contingency table problems: the role of intuition and inhibition. ZDM, 47(5), 825-836.

Oh, E., & Lim, D. (2005). Cross relationships between cognitive styles and learner variables in online learning environment. Journal of Interactive Online Learning, 4(1), 53-66.

Park, J., & Song, J. (2018). How Is Intuitive Thinking Shared and Elaborated During Small-Group Problem-Solving Activities on Thermal Phenomena?. Research in Science Education, 1-28.

Pithers, R. T. (2002). Cognitive Learning Style: a review of the field dependent-field independent approach. Journal of Vocational Education & Training, 54(1), 117-32.

Polya, G. (1973). How to solve it 2nd. New Jersey: Princeton University.

Provis, C. (2017). Intuition, analysis and reflection in business ethics. Journal of business ethics, 140(1), 5-15.

Ratumanan, T. G. (2003). Pengembangan model pembelajaran interaktif dengan setting kooperatif (Model PISK) dan pengaruhnya terhadap hasil belajar matematika siswa SLTP di Kota Ambon. Disertasi Doktor. Program Pascasarjana Universitas Negeri Surabaya.

Soedjadi, R. (2000). Kiat pendidikan matematika di Indonesia: konstatasi keadaan masa kini menuju harapan masa depan. Direktorat Jenderal Pendidikan Tinggi, Departemen Pendidikan Nasional.

Tall, D. (1992). The transition to advanced mathematical thinking: Functions, limits, infinity and proof. Handbook of research on mathematics teaching and learning, 495-511.

Taplin, M. (2010). Silent sitting: A resource manual.

Thomas, M. O. (2015). Inhibiting intuitive thinking in mathematics education. ZDM, 47(5), 865-876.

Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-dependent and field-independent cognitive styles and their educational implications. Review of educational research, 47(1), 1-64.

Zagorianakos, A., & Shvarts, A. (2015). The role of intuition in the process of objectification of mathematical phenomena from a Husserlian perspective: A case study. Educational Studies in Mathematics, 88(1), 137-157.

Refbacks

  • There are currently no refbacks.