The Coherence of Group Scheme of the High Initial Ability Students Based on Cognitive Style

Kristina Wijayanti, Mulyono Mulyono

Abstract

Teaching and learning deductive proof is one of the most important goals in mathematics education. According to the APOS theory, learning a concept is facilitated when students have constructed an adequate APOS mental structure for the concep. There are characteristics differences between field-dependent and field-independent students in responding to tasks to construct proofs. The purpose of this study was to analyze the coherence of the group scheme constructed by students with the high initial ability based on cognitive style to construct  proofs. This study was a qualitative. The research subjects were determined by the purposive sampling. Data collection using test and in-depth interviews. The credibility of data was carried out using triangulation. Data analysis used Miles and Huberman's model. The results showed that the FI and FN Subjects had thematized the group scheme and were coherent, while the FD Subject had thematized the group scheme but was not coherent.

Pengajaran dan pembelajaran bukti deduktif dalam matematika merupakan salah satu tujuan terpenting dalam pendidikan matematika. Menurut teori APOS (Aksi, Proses, Objek, Skema), belajar suatu konsep terfasilitasi apabila siswa telah mengkonstruksi struktur mental APOS yang memadai untuk konsep tersebut. Ditinjau dari gaya kognitifnya, ada perbedaan karakteristik antara mahasiswa field-dependent dan field-independent dalam merespon tugas yang memerlukan kemampuan mengkonstruksi bukti. Tujuan penelitian ini adalah menganalisis koherensi Skema grup yang dikonstruksi mahasiswa dengan kemampuan awal mengkonstruksi bukti adalah tinggi dan gaya kognitif FI, FN, FD.  Penelitian ini dirancang sebagai penelitian kualitatif. Subjek penelitian ditentukan dengan teknik purposive sampling. Teknik pengumpulan data menggunakan teknik tes dan wawancara mendalam.  Derajat kepercayaan data dilakukan dengan teknik pemeriksaan triangulasi.  Analisis data selama di lapangan mengggunakan model Miles dan Huberman. Hasil penelitian menunjukkan Subjek FI dan FN sudah mentematisasi Skema grup dan sudah koheren, sedangkan Subjek FD sudah mentematisasi Skema grup namun belum koheren.

Keywords

APOS; cognitive style; proof; initial ability

Full Text:

PDF

References

Altun, A. & Cakan, M. (2006). Undergraduate Students’ Academic Achievement, Field Dependent/Independent Cognitive Styles and Attitude toward Computers. Educational Technology & Society, 9(1), 289-297.

Alcock, L., Brown, G. & Dunning, C. (2015). Independent Study Workbooks for Proofs in Group Theory. Int. J. Res. Undergrad. Math. Ed. (2015) 1, 3–26

Anton, H. & Rorres, C. (2015). Elementary Linear Algebra with Supplemental Applications. Sin-gapore: John Wiley & Sons

Arnon I., Cottrill, J., Dubinsky, E., Oktac, A., Fuentes, S.R., Trigueros, M. & Weller K. (2014). Apos Theory: A Framework for Research and Curriculum Development in Mathematics Education. New York: Springer.

Ates, S. & Cataloglu, E. (2007). The effects of students’ cognitive styles on conceptual understandings and problem-solving skills in intro-ductory Mechanics. Research in Science & Technological Education, 25(2), 167–178.

Balacheff, N. (2008). The role of the researcher’s epistemology in mathematics education: an essay on the case of proof. ZDM Mathematics Education, 40, 501–512.

Blanton, M.L. & Stylianou, D. A. (2014). Understanding the role of transactive reasoning in classroom discourse as students learn to construct proofs. Journal of Mathematical Behavior, 34, 76–98.

Brijlall, D. & Bansilal, S. (2010). A genetic decomposition of the Riemann Sum by student teachers. Proceedings of the Eighteenth Annual Meeting of The Southern African Association for Research in Mathematics, Science and Technology-Crossing the boundaries (pp. 131-142).

Cai, J., Mamona-Downs, J. & Weber, K. (2005). Mathematical problem solving: What we know and where we are going. Journal of Mathematical Behavior. 24, 217–220.

Cañadas, M.C., Molina, M. & Río, A.d. (2018). Meanings given to algebraic symbolism in problem-posing. Educational Studies in Mathematics, 98(1), 19-37.

Cataloglu, E. & Ates, S. (2014). The Effects of Cognitive Styles on Naive Impetus Theory Application Degrees of PreService Science Teacher. International Journal of Science and Mathematics Education, 12(4), 699-719.

David A., Yopp, D.A., & Rob E. (2016) When does an argument use a generic example? Educational Studies in Mathematics, 91(1), 37-53

Dimmel, J. K. (2018). What Details Do Teachers Expect from Student Proofs? A Study of Proof Checking in Geometry. Journal for Research in Mathematics Education, 49(3), 261–291.

Dowlatabadi, H. & Mehraganfar, M. (2014). The Causal Correlation Between Field Dependence/Independence Cognitive Style and Vocabulary Learning Strategies among Iranian EFL Leaners. International Journal of Latest Research in Science and Technology, 3(4), 97-103.

Dubinsky, E., Dautermann, J., Leron, U. , and Zazkis, R. (1994). On Learning Fundamental Concepts of Group Theory. Educational Studies in Mathematics,27(3), 267-305.

Dubinsky, E., Weller, K., Michael, A.M., & Brown A. (2005). Some Historical Issues And Paradoxes Regarding The Concept Of Infinity: An Apos-Based Analysis: Part 1. Educational Studies in Mathematics, 58(3), 335-359.

Durand-Guerrier, V., Boero, P., Douek, N., Epp, S. S., & Tanguay, D. (2012). Examining the role of logic in teaching proof. In Proof and proving in mathematics education (pp. 369-389). Springer, Dordrecht.

Edwards, B. S. & Ward, M. B. (2004). Surprises from Mathematics Education Research: Student (Mis)use of Mathematical Definitions. The American Mathematical Monthly, 111(5), 411-424.

Fraleigh, J.B. (2014). A First Course in Abstract Algebra. Seventh Edition. London: Pearson Education Limited.

Hammack. R. (2013). Book of Proof. Virginia: Richard Hammack.

Hanifah & Abadi, A.P. (2018). Hubungan antara Pemahaman Konsep dan Kecemasan Menghadapi Mata Kuliah Teori Grup dengan Prestasi Akademik Mahasiswa. Kreano, Jurnal Matematika Kreatif-Inovatif, 9(2), 156-163.

Inglis, M. & Alcock, L. (2012). Expert and Novice Approaches to Reading Mathematical Proofs. Journal for Research in Mathematics Education, 43(4), 358-390.

Isnarto. (2014). Students’ Proof Ability: Exploratory Studies of Abstract Algebra Course. Inter-national Journal of Education and Research, 2(6), 215-28.

Jamaan, E.Z., Musnir, D.N., Syahrial, Z. (2020). The effect of problem-based learning model on students’ geometry achievement by controlling mathematics initial ability. Journal of Physics: Conference Series 1554 012034.

Melhuish , K., Ellis, B. & Hicks, M.D.. (2019). Group theory students’ perceptions of binary operation. Educational Studies in Mathematics, 103(1), 63-81.

Koichu, B. & Leron, U. (2015). Proving as problem solving: The role of cognitive decoupling. Journal of Mathematical Behavior, 40, 233–244.

Mamona-Downs, J. & Downs, M. (2005). The identity of problem solving. The Journal of Mathematical Behavior, 24(3-4), 385-401.

Mejía-Ramos, J. P., Weber, K., & Fuller, E. (2015). Factors influencing students’ propensity for semantic and syntactic reasoning in proof writing: A case study. International Journal of Research in Undergraduate Mathematics Education, 1(2), 187-208.

Mills, M. (2014). A framework for example usage in proof presentations, Journal of Mathematical Behavior, 33, 106– 118.

Miyakawa, T. (2017). Comparative analysis on the nature of proof to be taught in geometry: the cases of French and Japanese lower secondary schools. Educational Studies in Mathematics, 94(1), 37-54.

Miyazaki, M, Fujita, T., & Jones, K. (2017). Stu-dents’ understanding of the structure of deductive proof. Educational Studies in Mathematics, 94, 223–239.

Moore, R.C. (1994). Making the Transition to Formal Proof. Educational Studies in Mathematics. 27(3), 249-266.

Musser, T. (1998). Individual Differences, How Field-Dependence-Independence Affect Learners. Retrieved from: http: //www.personal.psu.edu/staff/t/x/txm4/paper1.htm1

Oh, E.J. & Lim, D.H. (2005). Cross Relationships between Cognitive Styles and Learner Variables in Online Learning Environment. Journal of Interactive Online Learning, 4(1), 53-66.

Putra, D.P.W. & Kristanto, Y.D. (2017). Some Aspects on Students’ Mathematical Reasoning in Exploring Group Theory. Proceedings The 2017 International Conference on Research in Education - Sanata Dharma University, 219-230

Rubowo, M.R., Purwosetiyono, F.D., & Wulandari, D. (2017). Pemahaman Konsep Mahasiswa Tentang Ring Pada Mata Kuliah Struktur Aljabar 2 Ditinjau Dari Pemikiran Kreatif Pada Siswa Kelompok Atas. Jurnal Silogisme Kajian Ilmu Matematika dan Pembelajarannya, 2(2), 69-73.

Ruseffendi, E.T. (2006). Pengantar kepada membantu dosen mengembangkan kompetensinya dalam pengajaran matematika untuk meningkatkan CBSA. Bandung: Tarsito.

Samkoff, A., Lai, Y., & Weber, K. (2012). On the different ways that mathematicians use diagrams in proof construction. Research in Mathematics Education, 14(1), 49-67.

Sarah K., Bleiler B., & Jeffrey D.P. (2017). Engaging students in roles of proof Journal of Mathematical Behavior, 47, 16-34.

Scusa, T. (2008). Five Processes of Mathematical Thinking. Retrieved from http://digitalcom-mons.unl.edu/mathmidsummative/38

Selden, A. & Selden, J. (2003). Validations of Proofs Considered as Texts: Can Undergraduates Tell Whether an Argument Proves a Theorem? Journal for Research in Mathematics Education, 34(1), 4-36.

Solow D. (2014). How to Read and Do Proofs. New York: John Wiley & Sons.

Sowder, L. & Harel, G. (1998). Types of Students' Justifications. The Mathematics Teacher, 91(8), 670-675.

Stylianou, D. A., Blanton, M.L. & Rotou, O. (2015). Undergraduate Students’ Understanding of Proof: Relationships Between Proof Conceptions, Beliefs, and Classroom Experiences with Learning Proof. International Journal of Research in Undergraduate Mathematics Education. 1(1), 91–134.

Stylianou, D.A. & Blanton, M.L. (2011). Developing Students' Capacity for Constructing Proofs through Discourse. The Mathematics Teacher, 105(2), 140-145.

Thompson, D., Senk, S.L., & Johnson, G.J. (2012). Opportunities to Learn Reasoning and Proof in High School Mathematics Textbooks. Journal for Research in Mathematics Education, 43(3), 253-295.

Tim. (2018). Panduan Akademik Universitas Negeri Semarang.

Wahyudin (2012). Filsafat dan model-model pembelajaran matematika. Bandung: Mandiri

Wasserman, N.H. (2017). Making Sense of Abstract Algebra: Exploring Secondary Teachers’ Understandings of Inverse Functions in Relation to Its Group Structure. Mathematical Thinking and Learning, 19(3), 181-201.

Weber, K. (2004). Traditional instruction in advanced mathematics courses: a case study of one professor’s lectures and proofs in an introductory real analysis course. Journal of Mathematical Behavior, 23, 115–133.

Weber, K. (2005). Problem-solving, proving, and learning: The relationship between problem-solving processes and learning opportunities in the activity of proof construction. Journal of Mathematical Behavior, 24, 351–360.

Wijayanti, K. (2016). Kesulitan Mahasiswa Field Dependent/Independent dalam Mempelajari Struktur Aljabar. Prosiding Seminar Nasional, FKIP UNISSULA, 251-258

Wijayanti, K., Waluya, S.B., Kartono, Isnarto. (2018). Kemampuan Mengkonstruksi Bukti pada Materi Grup dalam Pembelajaran Berbasis APOS. PRISMA 1, 551-558.

Wijayanti, K., Waluya, S.B., Kartono, Isnarto. (2019). Mental Structure Construction of Field Independent Students Based on Initial Ability to Prove in APOS-Based Learning. J. Phys.: Conf. Ser. 1321 032100

Witkin, Moore, Goodenough, & Cox. (1977). Field-Dependent and Field-Independent Cognitive Styles and Their Educational Implications. Review of Educational Research, 47(1), 1-64.

Zahid, M. Z. & Sujadi, I. (2017). Pembentukan Konsep Faktorisasi Aljabar Siswa Berkemampuan Tinggi. Kreano, Jurnal Matematika Kreatif-Inovatif, 8(1), 94-100

Refbacks

  • There are currently no refbacks.