IMPACT OF REPRESENTATIONAL APPROACH ON THE IMPROVEMENT OF STUDENTS’ UNDERSTANDING OF ACCELERATION

Sutopo -(1), Liliasari -(2), B. Waldrip(3), D. Rusdiana(4),


(1) Jl. Semarang, No. 5, Malang 65145
(2) Jl. Semarang, No. 5, Malang 65145
(3) Jl. Semarang, No. 5, Malang 65145
(4) Jl. Semarang, No. 5, Malang 65145

Abstract

Penelitian ini mengkaji dampak pendekatan representasi pada peningkatan pemahaman siswa tentang konsep percepatan. Subjek penelitian terdiri atas 24 mahasiswa pendidikan fisika Universitas Negeri Malang yang mengambil matakuliah Kapita Selekta Fisika Sekolah pada semester gasal tahun akademik 2011/2012. Dengan menggunakan desain penelitian mixed-method, disimpulkan beberapa dampak sebagai berikut: (1) Skor penguasaan konsep mahasiswa meningkat secara signifikan dari rata-rata 50,8% menjadi 85,0%, dengan efect size yang sangat tinggi (1,67) dan gain ternormalisasi yang juga tinggi (0,71). (2) Mahasiswa mampu menggunakan definisi operasional percepatan   untuk menganalisis diagram gerak yang berupa multi-flash; (3) Mahasiswa bisa memperbaiki sejumlah miskonsepsinya tentang percepatan; (4) Namun, sebagian kecil mahasiswa masih terpaku dengan miskonsepsinya bahwa percepatan benda yang ditembakkan ke atas berkurang seiring dengan ketinggiannya, dan tegangan tali pada ayunan selalu sama dengan berat pendulum.


This research examined the impact of representational approach on the improvement of students’ understanding of acceleration. Subject consisted of 24 prospective physics teacher students of State University of Malang, enrolling Selected Topic of School Physics course in Semester I of 2011/2012 academic year. Using mixed-methods design, this study concluded that (1) students’ mean score of conceptual test increased significantly from 50.8% to 85.0% with very large d-effect size (1.67) and high normalized-gain (0.71), (2) students became able to use operational definition of acceleration   to analyze multi-flash motion diagram, and (3) students remediated their misconceptions of acceleration. However, few students stuck in their misconception that acceleration of a shot-up object is decreasing with its elevation, and the tension in the rope of a swinging pendulum is equal to the weight of its bob.

Keywords

students’ conception; acceleration; representational approach; prospective physics teacher

Full Text:

PDF

References

Ainsworth, S., Prain, V., & Tytler, R. 2011. Drawing to learn in science. Science, 333: 1096-1097. Available on www.sciencemag.org, accessed on September 1.

Bao, L. 2006. Theoretical comparisons of average normalized gain calculations. Am. J. Phys., 74 (10): 917- 922.

Coletta, V. P., Phillips, J. A., & Steinert, J. J. 2007. Interpreting force concept inventory scores: Normalized gain and SAT scores. Phys. Rev. ST Phys. Educ. Res., 3, 010106.

Creswell, J. W. & Clark, V. L. P. 2007. Designing and conducting mixed methods research. Thousand Oaks, California: Sage Publications.

Ellis, P.D. 2010. The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. New York, Cambridge University Press.

Etkina, E. 2010. Pedagogical content knowledge and preparation of high school physics teachers. Phys. Rev. ST Phys. Educ. Res., 6, 020110

Eylon, B. & Bagno, E. 2006. Research-design model for professional development of teachers: designing lessons with physics education research. Phys. Rev. ST Phys. Educ. Res., 2, 020106

Finkelstein, N. D. & Pollock. S. J. 2005. Replicating and understanding successful innovations: Implementing tutorials in introductory physics. Phys. Rev. ST Phys. Educ. Res., 1, 010101.

Hake, R. R. 1998. Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. Am. J. Phys., 66 (1): 64-74.

Hestenes, D. & Wells, M. 1992. A Mechanics Baseline Test. The Physics Teacher , 30: 159-166.

Hubber, P., Tytler, R., & Haslam, F. 2010. Teaching and learning about force with a representational focus: Pedagogy and teacher change. Research in Science Education, 40: 5–28.

Kohl, P. B., Rosengrant, D., & Finkelstein, N. D. 2007. Strongly and weakly directed approaches to teaching multiple representation use in physics. Phys. Rev. ST Phys. Educ. Res., 3, 010108.

Kurnianto, P., Dwijananti, P., & Khumaedi. 2010. Pengembangan kemampuan menyimpulkan dan mengkomunikasikan konsep fisika melalui kegiatan praktikum fisika sederhana. Jurnal Pendidikan Fisika Indonesi, (6): 6-9.

Malone, K. L. 2008. Correlations among knowledge structures, force concept inventory, and problem-solving behaviors. Phys. Rev. ST Phys. Educ. Res., 4, 020107.

Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. 2004. SPSS for introductory statistics: Use and interpretation 2nd edition. New Jersey, Lawrence Erlbaum Associates Inc.

Nieminen, P., Savinainen, A., & Viiri, J. 2010. Force Concept Inventory-based multiple-choice test for investigating students’ representational consistency. Phys. Rev. ST Phys. Educ. Res., 6, 020109.

Ogilvie, C. A. 2009. Changes in students’ problem-solving strategies in a course that includes context-rich, multifaceted problems. Phys. Rev. St Phys. Educ. Res., 5, 020102.

Prain, V., Tytler, R., & Peterson, S. 2009. Multiple representation in learning about evaporation. International Journal of Science Education, 31(6): 787- 808.

Reif, F. & Allen, S. 1992. Cognition for interpreting scientiï¬c concepts: A study of acceleration. Cognition and Instruction, 9(1): 1-44

Rosenblatt, R. & Heckler, A. F. 2011. Systematic study of student understanding of the relationships between the directions of force, velocity, and acceleration in one dimension. Phys. Rev. St Phys. Educ. Res., 7, 020112.

Rosengrant, D., Heuvelen, A.V., & Etkina, E. 2009. Do student use and understand free-body diagrams? Phys. Rev. ST Phys. Educ. Res., 5, 010108.

Shaffer, P.S. and McDermott, L.C. 2005. A research –based approach to improving students understanding of vector nature of kinematical concepts. Am. J. Phys., 73(10): 921-931.

Singh, C. & Schunn, C. D. 2009. Connecting three pivotal concepts in K-12 science state standards and maps of conceptual growth to research in physics education. J. Phys. Tchr. Educ. Online, 5(2):16-42.

Smith, T. I. & Wittmann, M. C. 2007. Comparing three methods for teaching Newton’s third law. Phys. Rev. ST Phys. Educ. Res., 3, 020105.

Sutopo, Liliasari, & Waldrip, B. 2012. Implementation of representational approach to improve students’ reasoning ability and conceptual understanding on mechanics. Paper presented on National Seminar of Science Education, Unesa, Surabaya: January 14.

Sutopo, Liliasari, Waldrip, B., & Rusdiana, D. 2011. The prospective physics teachers’ prior knowledge of acceleration and the alternative teaching strategy for better learning outcome. Paper presented on National Seminar of Science Education, Unesa, Surabaya: December 10.

Thornton, R. K. & Sokoloff, D. R. 1998. Assessing student learning of Newton’s laws: The force and motion conceptual evaluation and the evaluation of active learning laboratory and lecture curricula. Am. J. Phys., 66 (4): 338-352

Waldrip, B., Prain, V., and Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40: 65–80.

Walsh, L.N., Howard, R.G., and Bowe, B. (2007). Phenomenographic study of students’ problem solving approaches in physics. Phys. Rev. St Phys. Educ. Res., 3, 020108.

Sujarwata. 2009. Peningkatan hasil belajar elektronika dasar ii melalui penerapan model pembelajaran problem solving laboratory. Jurnal Pendidikan Fisika Indonesia 5

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License