Kajian Fisika Aliran Material Granular Dedak Gandum Di Dalam Saluran Microfluidic

A. Perima -, I P. M. Wijaya, Y. Suharnoto, M. Widyarti

Abstract


Perkembangan teknologi mikroelektronik telah melahirkan suatu cabang ilmu baru yaitu microfluidics. Teknologi ini dapat memanipulasi instrumentasi laboratorium menjadi satu chip. Proses pembuatan chip diawali dengan pembuatan mask kemudian dilanjutkan dengan pencetakan master untuk kemudian dituangkan larutan Polydimethil siloxane (PDMS) dan diikatkan dengan kaca melalui teknologi plasma. Kemudian setelah chip dibuat, dilakukanuji microfluidics dengan melewatkan campuran material granular dedak gandum dan air di dalam saluran chip tersebut dengan kecepatan 5,000 ?l/jam dan pola aliran direkam dengan menggunakan kamera kecepatan tinggi. Dari hasil rekaman, gambar dianalisis dengan menggunakan persamaan Navier-Stokes dan dilakukan simulasi untuk dapat menduga pola aliran yang terjadi di dalam saluran.Kesimpulan yang didapatkan menunjukkan bahwa aliran fluida yang diperoleh bersifat non-newtonian, dan partikel dedak gandum memiliki sifat tabrakan inleastik.

The development of microelectronic technology leads to a new technology branch, namely microfluidics. This technology can manipulate a complicated laboratory instrument into a single chip. The process of making chip starts with making mask, molding a master, pouring of Polydimethilsiloxane (PDMS) into the master, and then making the bonding between the PDMS and glass by using plasma technology. The next step is microfluidics testing by passing the mixing of granular material wheatbran and dionized water through the chips channel with the speed of 5,000 ?l/hour, and recording the flow of fluid by using high speed camera. The result was then analyzed by Navier-Stokes equation and employed the simulation to predict the flow inside the chip. It can be concluded that the characteristics of fluids flow found are non-newtonian fluid and the wheatbran particle has inelastic collision.


Keywords


granular material; inelastic collision; Navier-Stokes equation; non-newtonian fluid; wheatbran

Full Text:

PDF

References


Almazan, L. J., Saluena C., Garzo, V., Poschel, T. 2013. A numerical study of the NavierStokes transport coefficients for two-dimensional granular hydrodynamics. New Journal of Physics, 15.

Blair, R. 2008. Nutrition and Feeding of Organic Poultry, UK, Cromwell Press, Trowbridge.

Bruus, H. 2008. Theoretical Microfluidics, New York, Oxford University Press.

Nagel, S.R., Jaegar, H. M. 1992. Physics of the Granular State. Science, 255, 1523-1531.

Nam-Tung, N., Steven, W. T. 2002. Fundamentals and applications of microfludics, Norwood, Artech House.

Narsilio G.A., O. B., Fityus, S., Yum, T.S., Smith, D.W. 2009. Upscaling of NavierStokes equations in porous media: Theoretical, numerical and experimental approach. Computer and Geotechnics, 36, 1200-1206.

Nori, N. M. 2006. Wet granular materials. Advances in Physics, 55, 1-45.

Philips, R. J., Armstrong, R.C., Brown, R.A.,Graham, A.L. and Abbott, J.R. 1992. A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Physics Fluids, 4, 30-40.

The, S.Y., Lin, R., Hung, L.H., Lee, A.P. 2008. Droplet microfluidics. Lab on a Chip 8(2): 198-220.

Zohdi, T. I. 2003. Large-scale statistical inverse computation of inelastic accretion in transient granular flows. International Journal of Non-Linear Mechanics, 38, 1205-1219.




DOI: https://doi.org/10.15294/jpfi.v10i1.3053

Refbacks

  • There are currently no refbacks.




Creative Commons License
Jurnal Pendidikan Fisika Indonesia is licensed under a Creative Commons Attribution 4.0 International Licensep-ISSN 1693-1246 e-ISSN 2355-3812