Inovasi Geometri sebagai Media Pembelajaran Matematika Kreatif
Abstract
Tujuan inovasi geometri sebagai media pembelajaran matematika kreatif adalah menyediakan contoh kreativitas dalam pembelajaran geometri sehingga geometri yang dikenal dalam pelajaran tidak hanya bentuk baku geometri klasik seperti segitiga, lingkaran, polygon beraturan. Siswa diperkenalkan cara menginovasi bentuk geometri tersebut menjadi bentuk-bentuk kreatif. Metode yang digunakan adalah inovasi permukaan aljabar dan inovasi polygon beraturan menjadi polihedra. Untuk metode pertama yaitu inovasi permukaan dengan menggunakan persamaan aljabar (misal bola dan silinder) dengan bantuan program Surfer. Sedangkan metode kedua adalah melakukan inovasi dengan materi lokal dilakukan dengan penyusunan bidang datar dalam bentuk ruang 3 dimensi melalui bentuk geometri yang sudah dikenal yaitu segi empat dan segilima menjadi polihedra. Adapun hasil penelitian dibedakan menjadi 2 hal dimana kedua hal tersebut selalu memanfaatkan kekayaan lokal Indonesia. Untuk hasil inovasi permukaan aljabar, hasil penelitian berupa motif-motif untuk batik. Sedangkan untuk inovasi polygon beraturan diperoleh Leonardo Dome,Leonardo Bridge dengan media kayu dan bambu, dan beberapa kreativitas disain penutup lampu dengan  kertas. Kegiatan pembuatan inovasi geometri tersebut telah dilakukan oleh mahasiswa pendidikan matematika FKIP dan matematika FSM UKSW dalam kuliah geometri untuk membuat prototip. Untuk selanjutnya, pendekatan yang sama dan produk yang dihasilkan diujicobakan pada siswa sekolah SMP dari Tangerang dan siswa menunjukkan ketertarikan yang lebih besar dibandingkan hanya mempelajari geometri di dalam kelas karena siswa mengalami interaksi yang lebih banyak.
The objective of this inovation as educative material for geometry is to provide samples of creativities in mathematical for learning geomety such that geometry should not be thaught in classical sense such as learning only rules in triangles, circles and regular polygons. Students are introduced for innovating the existing geometry into several creative materials. There are 2 methods implemented here,i.e. innovating algebraic surfaces which are mainly cylinders and spheres and innovating regular polygons into several polyhedra. The first part is done by creating surfaces using software called Surfer. The second method is done with the help of a home industry to create parts of the materials. The results of this research are shown by several creative products for learning geometry. The innovation of algebraic surfaces is implemented into batik’s motifs where students are taking part to create the motifs using Surfers. The second method has provide several media such as Leonardo Dome and Leonardo Bridge where physical law can also be integrated for learning application of learning geometry. Additionally, lamp’s decoration is also produced due to innovation of regular polygons into polyhedral. The activities are done by undergraduate students from FKIP math education and FSM from mathematics department of UKSW for creating the prototypes. After words, 24 students from middle school in Tangerang and Students have shown greater interest to learn geometry rather than the classical sense (only in class) since doing the approaches above, students have active interaction with materials.Â
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Burwell, J. (2013). Leonardo Da Vinci’s Self Supporting Bridge. Understanding and Using Structural Concepts. Manchester 1824: The University of Manchester (Retrieved from www.luntti.net/esityksia/elamystenMatikka/leonardo.pdf)
Di Teodoro, F. (2015). Leonardo da Vinci: The Proportions of the Drawings of Sacred Buildings in Ms. B, Institut de France. Architectural Histories, 3(1), Art. 1.
Hicks,S., Donald,S.M., Martin,E. (2017). Measuring Student Attitudes and Performance in order to Improve Future Performance and Enrolments in Senior Science Subjects., International Journal of Innovation in Science and Mathematics Education, 25(3), 1-10.
Koenderink, J. J. (2012). Geometry of imaginary spaces. Journal of Physiology-Paris, 106(5-6), 173-182.
Parhusip, H.A. (2015). Disain ODEMA (Ornament Decorative Mathematics) untuk Populerisasi Matematika, Prosiding Seminar Nasional Matematika,Sains dan Informatika, 8-15.
Roelofs, R. (2003, July). Leonardo da Vinci's Bar Grids. In Meeting Alhambra, ISAMA-BRIDGES Conference Proceedings(pp. 229-234). University of Granada.
Salvadori, M., Picone, M. (2007). From Student and Teacher to Professional Fellowship, Nexus Network Journal Architecture and Mathematics, 9(2), 169-382.
Sequin, C.H. (2014). Twistor Knots, Hyperseeing journal, 12-16.
Situngkir, H. (2008). The computational generative patterns in Indonesia, https://pdfs.semanticscholar.org/5336/a5a968906654a69aac0a29ede3eb1b40a653.pdf
Yulianto, R., Hariadi, M., & Purnomo, M. H. (2012). Fractal Based on Noise for Batik Coloring using Normal Gaussian Method. IPTEK, 23(1), 34-40
Yoon, C., Chin, S. L., Moala, J. G., & Choy, B. H. (2018). Entering into dialogue about the mathematical value of contextual mathematising tasks. Mathematics Education Research Journal, 30(1), 21-37.
Refbacks
- There are currently no refbacks.