Worked-Example Method on Mathematical Problem-Solving Ability in term of Students’ Initial Ability
Abstract
The reserch aims to understanding the phenomena of differences in mathematical problem-solving ability between students who obtained worked-example and expository learning method when reviewed from students’ initial ability. This study was a quasi-experimental with treatment by level 2×2 research design. We analize the data used two-way analysis of variance. We found that (1) There were differences in mathematical problem-solving ability between students who obtained worked-example and expository learning method. (2) There were differences in mathematical problem-solving ability between students who had high and low initial ability. (3) In high initial ability, students who obtained expository and worked-example learning method were relatively the same. (4) In low initial ability, students who obtained worked-example learning method were better than expository. (5) There was an interaction between learning method and initial ability in mathematical problem-solving ability.
Penelitian yang dilakukan ingin memahami fenomena perbedaan kemampuan pemecahan masalah matematis antara siswa yang memperoleh metode pembelajaran worked-example dan ekspositori ditinjau dari kemampuan awal siswa. Penelitian ini merupakan penelitian kuasi eksperimen dengan desain treatment by level 2×2. Penlitian ini menggunana analisis variansi dua jalan untuk menganalisis data penelitian. Dalam penelitian ini ditemukan bahwa (1) Ada kemampuan yang berbeda pada pemecahan masalah matematis antara siswa yang memperoleh metode pembelajaran worked-example dan ekspositori; (2) Ada perbedaan pada kemampuan pemecahan masalah matematis antara siswa yang memiliki kemampuan awal tinggi dan rendah; (3) Pada siswa dengan kemampuan awal tinggi, relatif tidak ada perbedaan pada kemampuan pemecahan masalah matematisnya; baik siswa yang memperoleh metode pembelajaran ekspositori dan worked-example; (4) Pada kemampuan dengan awal rendah, ada perbedaan dan siswa dengan metode pembelajaran worked-example lebih baik dibandingkan siswa yang belajar dengan ekspositori, dilihat dari kemampuan pemecahan masalah matematis; (5) Terdapat interaksi antara metode pembelajaran dan kemampuan awal terhadap kemampuan pemecahan masalah matematis.
Keywords
Full Text:
PDFReferences
Brouseau, G. (2002). Theory of didactical situation in mathematics. Dordrecht: Kluwer Academic Publishers.
Daeka, D., Budiyono, & Sujadi, I. (2014). Eksperimentasi Model Pembelajaran Kooperatif Tipe Numbered Head Together (NHT) Dan Think Pair Share (TPS) Ditinjau Dari Kreativitas Belajar Siswa. Jurnal Elektronik Pembelajaran Matematika, 2(3), 301–311.
Glass, G. ., & Hopkins, K. . (1970). Statistical Methods in Education and Phsycology. Englewood Cliffs, NJ: Pretince-Hall.
Harahap, E. R., & Surya, E. (2017). Kemampuan Pemecahan Masalah Matematis Siswa Kelas VII Dalam Menyelesaikan Persamaan Linear Satu Variabel. Edumatica, 07(01), 44–54.
Hillen, N. van L., Gog, T. Van, & Gruwel, S. B. (2012). Effects of worked examples in a primary school mathematics curriculum. Interactive Learning Environments, 20(1), 89–99. https://doi.org/10.1007/978-3-540-72196-3_9
Hoogerheide, V., Loyens, S. M. M., & Van Gog, T. (2014). Comparing the effects of worked examples and modeling examples on learning. Computers in Human Behavior, 41, 80–91. https://doi.org/10.1016/j.chb.2014.09.013
Irawan, I. P. E., Suharta, I. G. P., & Suparta, I. N. (2016). Faktor-Faktor Yang Mempengaruhi Kemampuan Pemecahan Masalah Matematika: Pengetahuan Awal, Apresiasi Matematika, Dan Kecerdasan Logis Matematis. Prosiding Seminar Nasional MIPA 2016, 69–73.
Irwansyah, M. F., & Retnowati, E. (2019). Efektivitas worked example dengan strategi pengelompokan siswa ditinjau dari kemampuan pemecahan masalah dan cognitive load. Jurnal Riset Pendidikan Matematika, 6(1), 62–74. https://doi.org/10.21831/jrpm.v6i1.21452
Jonassen, D. H. (2009). Learning to Solve Problems: An Instructional Design Guide. Gifted and Talented International, 24(2), 153–154. https://doi.org/10.1080/15332276.2009.11673538
Mwangi, W., & Sweller, J. (1998). Learning to Solve Compare Word Problems: The Effect of Example Format and Generating Self-Explanations. Cognition and Instruction, 16(2), 173–199. https://doi.org/10.1207/s1532690xci1602
NCTM. (2000). Principles and Standards for School Mathematics.
Nuraini, N. (2016). Pengembangan Lembar Kerja Siswa (LKS) Materi Bangun Ruang Sisi Datar Sekolah Menengah Pertama Kelas VIII dengan Pendekatan Worked Example Berorientasi pada Kemampuan Penyelesaian Masalah. (Doctoral Dissertation. Universitas Negeri Yogyakarta).
Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32(1–2), 1–8. https://doi.org/10.1023/b:truc.0000021806.17516.d0
Renkl, A., Atkinson, R. K., Maier, U. H., & Staley, R. (2002). From example study to problem solving: Smooth transitions help learning. Journal of Experimental Education, 70(4), 293–315. https://doi.org/10.1080/00220970209599510
Retnowati, E. (2008). Keterbatasan memori dan implikasinya dalam mendesain metode pembelajaran. Seminar Nasional Matematika Dan Pendidikan Matematika. Universitas Negeri Yogyakarta.
Santosa, C. A. H. F. (2018). Kemampuan Pemecahan Masalah, Efisiensi Kognitif dan Self-Determination Matematis Mahasiswa Melalui Metode Pembelajaran Worked-Example dengan Self-Explanation Prompting. (Doctoral Dissertation. Universitas Pendidikan Indonesia). https://doi.org/10.1017/CBO9781107415324.004
Santosa, C. A. H. F. (2019). Fostering Germane Load Through Self-Explanation Prompting In Calculus Instruction. IJOLAE: Indonesian Journal on Learning and Advanced Education, 1(1), 37–46. https://doi.org/10.23917/ijolae.v1i1.7421
Santosa, C. A. H. F., Suryadi, D., Prabawanto, S., & Syamsuri. (2018). The role of worked-example in enhancing students’ self-explanation and cognitive efficiency in calculus instruction. Jurnal Riset Pendidikan Matematika, 5(2), 168–180. https://doi.org/10.21831/jrpm.v0i0.19602
Soedjadi, R. (1994). Memantapkan Matematika Sekolah sebagai Wahana Pendidikan dan Pembudayaan Penalaran. Surabaya: Media Pendidikan Matematika Nasional.
Sweller, J., Ayres, P., & Kalyuga, S. (2011). The Worked Example and Problem Completion Effects. In Cognitive Load Theory (pp. 99–109). https://doi.org/10.1007/978-1-4419-8126-4
Tall, D. (2004). The psychology of advanced mathematical thinking: Biological brain and mathematical mind. Conference of the International Group for the Psychology of Mathematics Education, 1–8. Retrieved from http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1994e-biolbrain-mathmind.pdf
van Gog, T., & Kester, L. (2012). A test of the testing effect: Acquiring problem-solving skills from worked examples. Cognitive Science, 36(8), 1532–1541. https://doi.org/10.1111/cogs.12002
van Gog, T., Kester, L., & Paas, F. (2011). Effects of worked examples, example-problem, and problem-example pairs on novices’ learning. Contemporary Educational Psychology, 36(3), 212–218. https://doi.org/10.1016/j.cedpsych.2010.10.004
Refbacks
- There are currently no refbacks.