Analysis of Students' Conceptual Understanding of Logarithm Application Problems Based on Self-Efficacy

Authors

DOI:

https://doi.org/10.15294/0nwhhc11

Keywords:

Conceptual understanding, logarithms, self-efficacy

Abstract

Understanding the concept of logarithms is an essential perspective of self-efficacy gaps, as it influences students' problem-solving confidence and willingness to learn. This research utilizes a descriptive-qualitative approach to describe the differences in understanding mathematical concepts as viewed through students' self-efficacy. The research strategy employs a case study approach, where the observed phenomenon is the understanding of mathematical concepts. The research subjects consist of third-grade middle school students selected based on self-efficacy instrument results, focusing on students with high and moderate levels of self-efficacy. Data collection involves self-efficacy questionnaires, tasks on understanding mathematical concepts, interviews, and documentation. Data analysis follows the approach described by Miles et al. (2018), including data reduction, data presentation, and data verification to conclude. Research findings indicate that students who have a high level of self-efficacy are generally more adept at restating ideas, categorizing objects in difficulties, expressing ideas mathematically, and selecting the best course of action to solve issues. Furthermore, the implication suggests that fostering students' self-efficacy is crucial for enhancing their learning experience in mathematics, particularly in topics like logarithms and their applications. By recognizing the significant influence of self-efficacy on mathematical learning, educators can tailor teaching strategies to boost students' confidence and problem-solving abilities in these areas. Additionally, monitoring students' self-efficacy growth over time enables educators to adapt instructional methods effectively, ensuring that students are adequately supported in their mathematical journey. Ultimately, prioritizing the development of students' self-efficacy contributes to creating a more conducive learning environment where students feel empowered and motivated to engage with mathematical concepts and challenges.

Memahami konsep logaritma merupakan perspektif penting dari kesenjangan efikasi diri, karena mempengaruhi kepercayaan diri siswa dalam memecahkan masalah dan kemauan untuk belajar. Penelitian ini menggunakan pendekatan deskriptif-kualitatif untuk mendeskripsikan perbedaan pemahaman konsep matematika dilihat melalui self-eficacy siswa. Strategi penelitian menggunakan pendekatan studi kasus, dimana fenomena yang diamati adalah pemahaman konsep matematika. Subyek penelitian terdiri dari siswa kelas III SMP yang dipilih berdasarkan hasil instrumen self efikasi, dengan fokus pada siswa yang memiliki tingkat efikasi diri tinggi dan sedang. Pengumpulan data meliputi angket efikasi diri, tugas pemahaman konsep matematika, wawancara, dan dokumentasi. Analisis data mengikuti pendekatan yang dijelaskan oleh Miles et al. (2018), meliputi reduksi data, penyajian data, dan verifikasi data untuk menyimpulkan. Temuan penelitian menunjukkan bahwa siswa yang memiliki tingkat efikasi diri yang tinggi umumnya lebih mahir dalam menyatakan kembali ide, mengkategorikan objek yang mengalami kesulitan, mengungkapkan ide secara matematis, dan memilih tindakan terbaik untuk memecahkan masalah. Hal ini menunjukkan bagaimana pembelajaran tentang logaritma dan menyelesaikan masalah penerapan logaritma dipengaruhi secara signifikan oleh efikasi diri siswa. Kesimpulan penelitian ini menyiratkan bahwa efikasi diri penting untuk proses pembelajaran matematika. Oleh karena itu, melacak pertumbuhan efikasi diri siswa dan menyesuaikannya dengan pendekatan pengajaran yang dipilih sangatlah penting.

Downloads

Download data is not yet available.

Author Biographies

  • Muhammad Muzaini, [Scopus ID: 57207961942] Program Doktor Pendidikan, Program Pascasarjana, Universitas Muhammadiyah Makassar
  • Nasrun, Prodi Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Makassar

References

Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., ... & Weller, K. (2014a). From piaget’s theory to apos theory: reflective abstraction in learning mathematics and the historical development of apos theory. APOS Theory: A Framework for Research and Curriculum Development in Mathematics Education, 5-15. https://doi.org/10.1007/978-1-4614-7966-6_2

Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014b). APOS theory. A framework for research and curriculum development in mathematics education, 5-15. https://doi.org/10.1007/978-1-4614-7966-6

Best, M., & Bikner-Ahsbahs, A. (2017). The function concept at the transition to upper secondary school level: tasks for a situation of change. ZDM - Mathematics Education, 49(6), 865–880. https://doi.org/10.1007/s11858-017-0880-6

Bicer, A., Lee, Y., Perihan, C., Capraro, M. M., & Capraro, R. M. (2020). Considering mathematical creative self-efficacy with problem posing as a measure of mathematical creativity. Educational Studies in Mathematics, 105(3), 457–485. https://doi.org/10.1007/s10649-020-09995-8

Bieda, K. N. (2010). Enacting Proof-Related Tasks in Middle School Mathematics: Challenges and Opportunities Enacting Proof-Related Tasks in Challenges and Opportunities. Source: Journal for Research in Mathematics Education Journal for Research in Mathematics Education, 41(4), 351–382. https://doi.org/10.2307/41103880

Bishop, J. P., Lamb, L. L., Philipp, R. a, & Whitacre, I. (2014). Obstacles and Affordances for Integer Reasoning : An Analysis of Children ’ s Thinking and the History of Mathematics. Journal for Research in Mathematics Education, 45(1), 19–61. https://doi.org/10.5951/jresematheduc.45.1.0019

Borji, V., Font Moll, V., Alamolhodaei, H., & Sánchez, A. S. B. (2018). Application of the complementarities of two theories, APOA and OSA, for the analysis of the university students' understanding on the graph of the function and its derivative. Eurasia Journal of Mathematics Science and Technology Education, 2018, vol. 14, num. 6, p. 2301-2315.

Csíkos, C., & Szitányi, J. (2020). Teachers’ pedagogical content knowledge in teaching word problem solving strategies. ZDM - Mathematics Education, 52(1), 165–178. https://doi.org/10.1007/s11858-019-01115-y

Dubinksy, E. (2000). Mathematical literacy and abstraction in the 21st century. School Science and Mathematics, 100(6), 289-297. https://doi.org/10.1111/j.1949-8594.2000.tb17322.x

Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In The teaching and learning of mathematics at university level: An ICMI study (pp. 275-282). Dordrecht: Springer Netherlands. https://doi.org/10.1007/0-306-47231-7

Dubinsky, E., Weller, K., Mcdonald, M. A., & Brown, A. (2005). Some historical issues and paradoxes regarding the concept of infinity: An APOS-based analysis: Part 1. Educational studies in mathematics, 58, 335-359. https://doi.org/10.1007/s10649-005-2531-z

Dubinsky, E., & Wilson, R. T. (2013). High school students’ understanding of the function concept. The Journal of Mathematical Behavior, 32(1), 83-101. https://doi.org/10.1016/j.jmathb.2012.12.001

Ebony O. McGee. (2015). Robust and Fragile Mathematical Identities: A Framework for Exploring Racialized Experiences and High Achievement Among Black College Students. Journal for Research in Mathematics Education, 46(5), 599-625. https://doi.org/10.5951/jresematheduc.46.5.0599

Ekowati, D. W., Azzahra, F. Z., Saputra, S. Y., & Suwandayani, B. I. (2021). Realistic mathematics education (RME) approach for primary school students’ reasoning ability. Premiere Educandum : Jurnal Pendidikan Dasar Dan Pembelajaran, 11(2), 269-279. https://doi.org/10.25273/pe.v11i2.8397

Haciomeroglu, E. S., Aspinwall, L., & Presmeg, N. C. (2009). Visual and Analytic Thinking in Calculus. Mathematics Teacher, 103(2), 140–145.

Hoogland, K., & Tout, D. (2018). Computer-based assessment of mathematics into the twenty-first century: pressures and tensions. ZDM - Mathematics Education, 50(4), 675–686. https://doi.org/10.1007/s11858-018-0944-2

Ikram, M., Purwanto, Nengah Parta, I., & Susanto, H. (2020). Mathematical reasoning required when students seek the original graph from a derivative graph. Acta Scientiae, 22(6), 45–64. https://doi.org/10.17648/acta.scientiae.5933

Jojo, Z. M. M., Maharaj, A., & Brijlall, D. (2013). From Human Activity to Conceptual Understanding of the Chain Rule. Journal of Research InMathematics Education, 2(1), 77–99. https://doi.org/10.4471/redimat.2013.21

Jones, S. R. (2018). Prototype images in mathematics education: the case of the graphical representation of the definite integral. Educational Studies in Mathematics, 97(3), 215–234. https://doi.org/10.1007/s10649-017-9794-z

Kaskens, J., Segers, E., Goei, S. L., van Luit, J. E. H., & Verhoeven, L. (2020). Impact of Children’s math self-concept, math self-efficacy, math anxiety, and teacher competencies on math development. Teaching and Teacher Education, 94, 1-14. https://doi.org/10.1016/j.tate.2020.103096

Lee, K. H. (2017). Convergent and divergent thinking in task modification: a case of Korean prospective mathematics teachers’ exploration. ZDM - Mathematics Education, 49(7), 995–1008. https://doi.org/10.1007/s11858-017-0889-x

Luria, S. R., Sriraman, B., & Kaufman, J. C. (2017). Enhancing equity in the classroom by teaching for mathematical creativity. ZDM - Mathematics Education, 49(7), 1033–1039. https://doi.org/10.1007/s11858-017-0892-2

Marufi, Ilyas, M., Winahyu, & Ikram, M. (2021). An Implementation of Ethno-STEM to Enhance Conceptual Understanding. Al-Jabar: Jurnal Pendidikan Matematika, 12(1), 35-44. DOI:10.24042/ajpm.v12i1.7834

Marufi, M., Ilyas, M., Ikram, M., & Kaewhanam, P. (2022). Exploration of high school students ’ reasoning in solving trigonometric function problems. 13(2), 231–249.

Menon, D., & Sadler, T. D. (2018). Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses. International Journal of Science and Mathematics Education, 16(5), 835–855. https://doi.org/10.1007/s10763-017-9813-7

Miles, M. B., Huberman, A. M., & Saldaña, J. (2018). Qualitative data analysis: A methods sourcebook. Sage publications.

Muyassaroh, I., & Dewi, P. (2021). Etnomatematika: Strategi Melahirkan Generasi Literat Matematika Melalui Budaya Lokal Yogyakarta. Jurnal Dikoda, 2(1), 1–12.

Ndlovu, M., Ramdhany, V., Spangenberg, E. D., & Govender, R. (2020). Preservice teachers’ beliefs and intentions about integrating mathematics teaching and learning ICTs in their classrooms. ZDM - Mathematics Education, 52(7), 1365-1380. https://doi.org/10.1007/s11858-020-01186-2

Nolte, M., & Pamperien, K. (2017). Challenging problems in a regular classroom setting and in a special foster programme. ZDM - Mathematics Education, 49(1), 121–136. https://doi.org/10.1007/s11858-016-0825-5

Ratnayake, I., Thomas, M., & Kensington-Miller, B. (2020). Professional development for digital technology task design by secondary mathematics teachers. ZDM - Mathematics Education, 52(7), 1423–1437. https://doi.org/10.1007/s11858-020-01180-8

Renninger, K. A., Cai, M., Lewis, M. C., Adams, M. M., & Ernst, K. L. (2011). Motivation and learning in an online, unmoderated, mathematics workshop for teachers. Educational Technology Research and Development, 59(2), 229-247. https://doi.org/10.1007/s11423-011-9195-4

Scheiner, T. (2016). New light on old horizon: Constructing mathematical concepts, underlying abstraction processes, and sense making strategies. Educational Studies in Mathematics, 91(2), 165–183. https://doi.org/10.1007/s10649-015-9665-4

Thurm, D., & Barzel, B. (2020). Effects of a professional development program for teaching mathematics with technology on teachers’ beliefs, self-efficacy and practices. ZDM - Mathematics Education, 52(7), 1411-1422. https://doi.org/10.1007/s11858-020-01158-6

Verzosa, D. M. B. (2020). Pre-service elementary teachers’ reasoning in introducing multidigit subtraction. International Journal of Mathematical Education in Science and Technology, 51(6), 876–892. https://doi.org/10.1080/0020739X.2019.1647573

Williams, K., & Williams, H. (2021). Mathematics problem-solving homework as a conduit for parental involvement in learning. Evaluation of a pilot study. Educational Review, 73(2), 209-228. https://doi.org/10.1080/00131911.2019.1566210

Yiǧit Koyunkaya, M. (2016). Mathematics education graduate students’ understanding of trigonometric ratios. International Journal of Mathematical Education in Science and Technology, 47(7), 1028–1047. https://doi.org/10.1080/0020739X.2016.1155774

Yu, R., & Singh, K. (2018). Teacher support, instructional practices, student motivation, and mathematics achievement in high school. Journal of Educational Research, 111(1), 81–94. https://doi.org/10.1080/00220671.2016.1204260

Downloads

Additional Files

Article ID

2524

Published

2024-05-23

Data Availability Statement

Complete data is available and will be provided upon request with sufficient justification. Please contact the corresponding author for this purpose.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>